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INTRODUCTION

This report details results of research performed during the period April 1, 1992
through September 30, 1994 under NASA contract no. NAG-l-1407.

The general objective of this research has been to construct a model capable of

predicting the damage development caused by out-of-plane static loading in laminated
graphite/epoxy composite plates.

SUMMARY OF COMPLETED RESEARCH

The following is a summary of research completed during the contract period:

1) a cohesive zone model has been developed for predicting delamination

growth in thermoset composites;

2) the cohesive zone model has been shown to be thermodynamically
acceptable and consistent with the continuum mechanics approach to fracture

prediction;

3) the cohesive zone model has been implemented to a finite element computer

algorithm developed specifically for use under this contract;

4) preliminary predictions have been made with the model;

5) preliminary experiments have been performed as a means of model

verification; and

6) the model predictions have been compared favorably to experimental
results.

The results reported above are documented in Appendix A.
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The computer code entitled DANCOM has been written as a part of this

contract. A hard copy of this code is included in Appendix B.
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Modeling the Progressive Failure of Laminated
Composites with Continuum Damage
Mechanics

IO'_FERE'NCE: Lo, O. C., Allen, D. H., and Harris, C. E., "'Modeli*lg tile Progressive Failure of

i.aminated Composites with Continuum Damage Mechanics," /:racturc Mc_hanics: Twenty-

Third .S'vtlTposium. AS'TM STI' 1189. Ravinder Chona. Ed, American S_:icly fi_r resting and
Materials, Philadelphia, 1993, pp. 680-695.

A BSTRACI': A continuum-damage-mechanics-based model is proposed for the analysis of the

progressive failure process in laminated composite structures. The laminate's response is deter-

mined by nonlinear constitutive equations that account for each type of matrix-dominated dam-

age through strain-like internal state variables. Evolution of these internal state variables is gov-

erned by the damage-dependent ply-level stresses. The updated damage state and the ply-level

stresses are then employed in the local-global evaluation of component failure. This model is

incorporated into a finite-element analysis code to facilitate the examination of structures with

spatially varying stress fields. The stress and damage distribution obtained from the analysis at

various points in the loading history provide information about the progression of events leading

to the failure of the component. The progressive failure of fatigue-loaded rectangular crossply-
laminated platescontaining a centered circular cutout has been examined with the model. Most

of the predicted damage is localized in a region near the cutout. 'Rather than propagating out-

ward, the damage intensifies in this region until failure occurs. The feasibility of modeling the

evolution of each type ofsubcritieal damage is demonstrated with the current framework. This

ability to simulate the progressive failure process at this level of detail will assist in the design of
safer and more efficient composite structures.

KEY WORDS: laminated composites, progressive failure, matrix damage, continuum damage

mechanics, finite-element analysis, damage accumulation, fracture mechanics, fatigue
(materials)

The accumulation of subcritical damage in laminated composites is of major concern espe-

cially in light of the increased use of these advanced material systems in critical engineering

applications. Although in some instances distributed damage can retard the failure process in

a component by redistributing load away from the high stress region, it is still the primary

contributing factor to the eventual catastrophic failure. While efforts can be made to delay the

development of damage by modifying the laminate stacking sequence or the component

design, distributed damage is present throughout the life of the component. Even before enter-

ing service, damage is inflicted on the component by the manufacturing process.

To produce safe and reliable laminated composite components, it is essential to know how

such damage affects the performance and failure of these components. Experimental

approaches are not economical due to the large numbers of parameters that can be varied by

the designer. Thus, much effort has been placed on the development of analytical methods to

Graduate research assistant and director, respectively, Center for Mechanics of Composites, Aero-
space Engineering Department, Texas A&M University, College Station, TX 77843-314 I.

"_Itead, Mechanics of Materials Branch, NASA Langley Research Center, 14ampton, VA 23665-5225.
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The progressive nature of the lldlurc process in laminated comp(_siles ha._ Ix:en well docu-

menled in lhe published liieralure [I-4]. This process involves lhe accumul;ilion of several

types of damage. Generally, lhe first type ofdamage to appear is matrix cracking i,i rel-ions of

high stress gradients. Along the free edges and at the intersection of matrix cracks from adja-

cent plies, delaminations are propagated by large intralaminar stresses. The slrcss rcdislribu-

tion resulting from these Iwo types of damage in turn assist in the developmen! of damage in

the surrounding areas. As matrix-dominated damage accumulates, the loads are transferred to

the plies with fiber orientation aligned closest to the direction of the applied loads. The bonds

between the fibers and matrix are fractured in these plies. This is accompanied by the fracture

of the fibers. Since thc reinforcing fibers are the primary load-carrying component of the lam-

inate, their fracture signifies the imminent failure of the structure itself. This failure process is

in contrast to that observed in conventional homogeneous materials where failure can be

traced to the propagation of a single flaw. In composites, each flaw in the laminate will not

greatly affect the overall response of the structure; instead, it influences ihe development of

other flaws, it is the cumulative effect ofthe subcritical damage that results in the failure of the

structure. Thus, any attempt to predict the residual strength and life of laminated composite

structures must address the damage accumulation process as well as its effect on the response

of the material.

Most analyses have not adequately accounted for this history-dependent subcritical damage

accumulation process. Some linear elastic fracture mechanics based approaches replace the

distributed damage with a single equivalent macrocrack [5,6]. When the stress intensity factor

or the strain energy release rate is equal to the fracture toughness, failure occurs. Other

approaches calculate the stress field with the assumption of no accumulated damage. To com-

pensate for the stress redistribution, the failure criteria are either evaluated at a distance away

from the stress concentrator or are evaluated using the stresses that are averaged within this

region [7-9]. A limitation of these approaches lies in the determination of the equivalent

macrocrack size or the evaluation zone. Analytical expressions are not provided to relate the

distributed damage to the equivalent geometric properties. Instead, these values are selected

to correlate with experimental data and thus are restricted to similar geometries and loading

histories [ 10]. Often these values that are supposed to describe the evolving damage state are

assumed to be constant throughout the failure process. Furthermore, in light of the increasing

inhomogeneity with damage accumulation, these indirect approaches to the accounting of

subcritical damage do not provide sufficient information to predict accurately the evolution

of the damaged region and the eventual failure of the component.

Ply discount methods have also been used in conjunction with the aforementioned

approaches to model the stress redistribution process, but the abrupt loss of stiffness does not

reflect the gradual degradation that occurs with subcritical damage accumulation. Recent

efforts have explicitly modeled each flaw in lhe damaged region to capture the conditions lead-

ing to failure. Elasticity solutions are available for idealized component geometries and sparse

damage states. However, numerical computational approaches such as the finite-element

method have to be _mployed for typical damage configurations [ ! I- 16]. To obtain accurate

stress fields, each flaw is modeled by a large number ofelements. The stress ficlds arc then used

in the failure criterions to determine the initiation and propagation of each flaw. It is neces._iry

to update the finite-element model as the damage state evolves. This type of an,llysis, unfor-

tunately, can rapidly become computalionally untenable since a conlponcnl may ,tccumulate

many interacting Ilaws hcfore failure occurs.

The rcquireinenl for information concerning the sul_:ritical dam:lgc :lccumula_ion and the
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tlC..ttc I,.H ;l ll:iClaHIc al_al\Nt_ "-:hcmt" have llrOillplcd the u_¢ of lilt' t'()lllliltltllll-d.:lll|;l!',C-

IIIc't'll:llliC-, al)ln_:,ch in IIIC :III;ttv:_iS of I)I(_I[:I/(.!SSiVC faihl,c i,i I:i,uin:ilcd Clll:ll)lINilt: '_ll'llCltllC:g

I /7-2Cq. Ihc size :lud dislrihulion of the subcritical damage ftmnd in I:lmin:llcd ,.,mH)t_silcN

cu,al+[c Ihc selection ol:l rcl)rcscntativc voluinc elculcnl (l?,Vl-:) of material that is small in scale

relative IO Ihc slructurc, but is of sull'lcicnt size to charactcri/.e the danlal;c contained v,,ithirt

by slalistically avc_;lgcd quantities. [hcse averaged quantities, kn(+wn :is intcrn:tl S1;llC v:tri-

;il)lcs. (Icscril)c the I)hysical attributes of cach mode of damage. The rcsulting clfizcls of Ihc

dislribulcd daln;lgc arc then rcllccled in the constitutive rclatioilshq) through the iIHclilal stale

variat_les. l'hcrcl_rc, a medium c,{mtainmg a multitude of small iuternal cracks can bc ;tua-

ly;,.cd :is a conlilluum wilhout internal boundaries. Due IO the nonlinear n;lturc of the consli-

tulivc equations. Ihis type of analysis is apl)roached numerically by mclllods such :is linilc

elcmcnts. This holnogcnizaliol_ oflhc stlbcriliC;.ll damage eliminates Ihc I;15,kof inodcling indi-

vidual Ilaws: but since the hon_ogcnizalion is performed at a scale thai is small with respect to

the structure, the results arc of sutficient resolution to provide an indication of tim damage

accumulation and stress redistribution.

A progressive failure model, incorporating the continuum-damage-mechanics approach to

model-matrix-dominated damage has been under development by the authors [21-261. The

model's capability to predict the development of matrix cracks under tension-tension fatigue

loading conditions is used to examine the development of damage in composite laminates.

The information obtained is then used to predict the failure of the component.

Progressive Failure Model

The proposed progressive failure model consists of three components. The.first is the nob-

linear constitutive relationships derived using continuum damage mechanics. Next is the

structural analysis algorithm incorporating the aforementioned constitutive relationships,

and, finally, failure criteria to indicate the catastrophic failure ofthe structure: Due to the pro- •

gressive nature of the failure process, these components are employed in a time-stepping man-

ner to evaluate the stress state and damage evolution throughout-the loading history. The

results obtained at each step are then used to update the model for the next step in the loading

history. The following sections will first present the essential aspects ofeach component of the

progressive failure model. These components will then be assembled in an analysis scheme to

form the progressive failure model. More in-depth discussions on these components can be

found in the published literature [21-261.

Damage-Dependent Constitutive Relationships

The damage-dependent constitutive relationships form the foundation of this progressive

failure model. These relationships determine the stress-strain response in the presence of inter-

hal damage as represented by the internal state variables. Within the framework of continuum

damage mechanics, tim rate of change of these internal state variables is calculated from his-

tocy-dependem damage-evolution laws. Thus, in the course of the analysis, both the changes

in the stress state as well as in the damage state are determined. The probable location and

mode of failure ca,_ then be inferred from these results calculated at sequential points in the

loading history. The principles of continuum damage mechanics further require the selection

of local volume elements iu which homogenization is performed. For matrix cracking, this

volume can be sl)ecilicd at the ply level. This selection of the local volume serves :is the logical
bt, ildillg block ill Ihis analysis. ['hc model of a composite laminate can then Im f_rmcd by

asse,nbling these buildi rig blocks together. I_y also developing.damage evOlulion laws and I'ail-

urc functions Iobc al)l)lic:tblc :it Ihc ply level, the forinulatitm becomes irtdcl)cndcm of the
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plccludc Jl., NpcL'tliC'aliol_ al |tic pl,,' Icvcl_ il t_ ins.tc:_d inhoduccd :it li_c kunln:0.c level. I _ illain-

I[til) thC !_.C{)l)'iL'_|'iL" illdL_pcnL]L_'llL_L" {*it thL_ I)l()dCl, :| SLy| Ot'L|_|ll_:t!_c-dcpcl_LlClll I:lllll|l:l_lt)l) C(]tl: |-

liOIIS _A'ith Ill()diliC;lliOllS, [() ;tcconlnlcIdaic Ihc efli2cls o(thc dclamin:tlion d;i m:Wa: is Cml_loycd.

lhc kinematic c|lEct_; of the mahtx cracks ;tnd dcl:unit_ations ate quantified hy the u_tcrnal

state v;u-i:d_lcs uxcd m this ,nodcl. Matrix cracking is me;tsurcd by Ihc volume avcr:lgcd dyadic

producl of the c,-;ick filce displacement..,, and tile cr;Ick face norm:d..,, as proposed by Vak-

ulcnko and K:,cha,lov [271

,I ! Ii .,n,d. _- (I)
_'l{rt -- |"1. "

where _,._;is tile second-order tensor intcrm, I state variable. I.', is thc local representative vol-

ume in the deformed state, and S is the crack surface area. [his product represents the aver-

aged kinematics of the crack faces and can be interpreted as additional strains incurred by the

material as a result of the internal damage. Since the internal state variable is a second-order

tensor, it is capable of modeling all three kinematic modes of crack face displacement. From

micromechanics, it has been found that the effects of the matrix cracks can be introduced into

the ply-level constitutive equations as follows [28]

{,,_} = [Ql{c_ - ,',,';} (2)

where a_. arc the locally averaged components of stress, [Q] is the ply-level transformed stiff-

ness matrix, c;. are the locally averaged components of strain, and cg'f are the components of

the internal state variable for matrix cracking. Since interlaminar delaminations are not sta-

tistically homogeneous through the laminate thickness, their effects cannot be homogenized

at the ply level like the matrix cracks. The effects of the delamination are modeled instead

using an RVE at the'laminate level. The presence ofinterply delaminations in a laminate intro-

duces jump discontinuities in the displacement and rotation of the normal line to the mid-

plane of the plate. The Kirchhoff-Love hypothesis is thus modified to account for these dis-

continuities at the damage interfaces as shown here {291

u(xo..z) = u"(x.y) - z [_" + H(z - z.)t_?! + tl(: - z3u?

o(xw.z) = o"(x._) -- z[, ° + H(z - z,).?l + lt(z - _#v.._"o

(3)

(4)

w(x,y,z) = ,te(x,v) + H(z - z,)_,P, (5)

where tg', v", and i¢" are the midplane displacements; /3" and o" are the ply rotations;

u_', v,0, and _, are the ply jumpdisp|acement due to delamination:/J[' and rt_ are the ply jump

rotations due to delaminations; and H(z - z_) is the Heavyside step function. These displace-

ment equations are averaged over a local area to produce locally averaged displacements. The

results are then used in the calculation of the average strains via the ply level constitutive rela-

tionship shown in Eq 2. Integrating these ply stresses through the thickness of the laminate will

produce the following damage--dependent lamination equations

I -
1_\'I = _ [Qh(z, - z_ .t){cZl - -_ _ [Qk(z_ - z__,)[.?} + _ [(2,1._,1."}.

_.:l -- k-I _-I

+ [O:l,(=-,---, ,)l,,"l,- Iol,(--, - -,
_-| t-I

,){,,"'h (6)
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where N is the component of the resultant force per unit length; A4 is the componcqt of the

resultant moments pcr unit Icngth, t} is the number ofplics in thc lami hate: c)' and d;. are com-

ponents of the midplanc strains and curvatures; [Q}_ is the elastic modulus matrix for the/<'_'

ply in latninate coordinates; {w"}_ contains the matrix cracking internal state variables for the

k'" ply, d is the number ofdelaminatcd interfaces; and [0j], are the weight-averaged stiffness

matrices of the sublaminate associated with the i'" delaminatcd interface [261. This sublami-

hate is composed of the ply directly above and below tim delaminated interface. I, is the thick-

ness of this sublammatc. {_r°}, are components of the delamination damage internal state vari-

able, which includes components for crack face displacements and rotations, for the i'"
delaminated interface. These delaminadon internal state variables arc defined in a similar

manner as for matrix cracking. However, the local volume is now specified at the sublaminate

level. The effects of the internal damage are accounted for by the last three terms on the right-

hand side of Eqs 6 and 7, the first two representing the contribution from delamination and

the last term from matrix cracking. These terms can be viewed as "damage induced" forces

and moments whose application to the undamaged material will produce midplane strain and

curvature contributions equivalent to those resulting from the damage-induced compliance

increase. If no damage were present, these equations would reduce to the elastic lamination

equations.
The internal state variables for the matrix cracks and delaminations can be determined

either from experimental data [22,28] or damage evolution equations [301. The 'former

method requires prior knowledge of the damage state in the structure. Since the objective of

this research effort is to predict the accumulation of damage and its effect on the structure,

damage evolution equations are used in this model. These relationships describe the rate at

which the internal state variables are changing in the RVE and are fu actions of only the current

state at each locally averaged material point. The damage state at any point in the loading

history is then found by integrating the damage evolutionary laws. For symmetric crossply

laminates subjected to uniaxial ioading conditions, the predominant type of damage is the

Mode I opening intraply matrix crack. It is assumed that all the crack surfaces are oriented

perpendicular to the plane formed by the ply. Thus, matrix damage in each ply can be char-

aeterized by only one component of the damage tensor. This component, o_, is associated

with the displacement of the crack face in a direction parallel to the crack face normal. Based

on the observation that the accumulation of matrix crack is related to the strain energy release

rate, G, in a power law manner [31], the authors have proposed the following evolutionary

relationship for this component of the damage tensor when the load is applied cyclically [30]

dS

where the term do_'z/dS reflects the changes in the internal state variable with respect to

changes in the crack surfaces. This term is calculated analytically from a relationship describ-

ing the average crack surface displacements in the pure opening mode (Mode I) for a medium

containing alternating 0* and 90* plies [28]. It has been found that for typical brittle graphite/

epoxy material systems dce*,._/dS varied little with damage wtmn subjected to fatigue at constant
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load levels. Illcrcfolc, d_,_/d.g" is asnlilucd m bc indcl_clu]cnl ol 1lIe Ilutnhci of Ill:Illix Clack_

m lhc ply. lhi:_ ;.H_lllOXiln:4ti',m leaves th,.: ,.:Olnl/oncnl. of the l;u -Iicld I,_ad lull In:tl IO the crack

su rl'acc :lnd tim I:lycr thickness as the dctcln_illi ng f;iclof for the v:lhlc ofd,,_,/d5 ". (; is Ihc Sll;lin

energy release r:llC c;dculalcd from the ply-level damagc-dcl_cndcIH slrcsscs lhc Imtlcrial

i_aralnctcrs,/] and t), arc i)helmlncnological in IlalLllC and II1LISI lie determined from expcri-

menial d;,ta. For the ilrcsenl inodcl,/,: and J}are detcrlni ned from Ihc daln:lgc hislol'y ofa [Oj

90_], AS4/3502-6 graphile/epo×y laminate fatigue loaded al a imlXilnUln .slrcss alnplilude of

296.5 M Pa and a cycle ratio of 0. I as repoll.ed by Chou el al. [ .I / ]. The ilalanlclers have been

found to be

/_ = 4.42, ti = 6.39 (9)

for this material system. Because/_ and ti arc assumed to bc malcrial l)aramclcrs, the values

determined from one laminate stacking sequence should be valid for other laminates as well.

This has been found to be accurate for crossply laminates with varying numbers of transverse

plies and stress amplitudes [32]. Further investigation of other laminate stacking sequences

will be required to determine whether this assumption is valid for noncrossply layups. Since

the interactions with the adjacent plies and damage sites are implicitly reflected in the calcu-

lation of the ply-leveL response through the laminate-averaging process, Eq 8 is not restricted

to a particular laminate stacking sequence. Thus, both the transverse matrix crackingand axial

splits in a crossply laminate subjected to tensile cyclic loading conditions can be modeled with

the same equation.

Structural Analysis Algorithm

To incorporate the damage-dependent laminate constitutive relationship into a finite-ele-

ment formulation, the damage-dependent force and moment resultants, Eqs 6 and 7, are sub-

stituted into the plate equilibrium equations. The restriction to symmetric laminate stacking

sequence is taken to simplify the formulation. This assumption produces a zero coupling stiff-

ness matrix and results in uncoupled governing differential equations. These governing differ-

ential equations are integrated against variations in the displacement components to produce

a weak formulation of the damage-dependent laminated plate equilibdum equations. The cur-

rent algorithm uses a three-node triangular element with five degrees of freedom at each node;

this izonsists of two in-plane displacements, one out-of-plane displacement, and two out-of-

plane rotations. This element is formed by combining a constant strain triangular element and

a nonconforming plate bending element. Corresponding displacement interpolation func-

tions are substituted into the weak formulation of the plate equilibrium equations to produce

the following equilibrium equations in matrix form [33]

01inI tx x 0 o = F5 +/rl, + F'o
O O X" F5 LZ:l,]

(10)

where [K] is the element stiffness matrix. {6} contains the out-of-plane displacement and rota-

tions. {FA} is the applied force vector, and {F,r} and {Fo} are the "damage-induced" force vec-

tors resulting from matrix cracking and delamination, respectively. The effects of the internal

damage now appear on the right-hand side of the equilibrium equations as damage-induced

force vectors. -I'his representation eliminates the need to recalculate the elemental stiffness

matrices each time the damage state evolves, thus saving much colnputatiolml lime.
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failtnc in lhc surrounding regions. "lypical failure durin B tensile ¢ondilions is signaled by fiber

Iraclur¢ in Ihc princil);d load carryin[: i)lic_ ola mullidircctional I;mlinalc. This is evaluated

b\: the I_llt_win£. critcrit_n

c,, __ c,, I (l l)

where t:,, is the average ply level strain in the fiber direction and t:,,¢ is the tensile failure strain
measured from a unidireclional laminate. After failure has been declare(], the ply no longer

can support additional load. The current analysis considers this condition as the failure of

component. In situations where the failure process is permitted to progress beyond the first

fiber failure, the stability of the failure process is evaluated at the global level. The stress state

for the entire structure with the updated damage is recalculated using the current loading con-

dition. Local laminate failure isevaluated once again in the structure. If it has been determined

that additional laminate failure has not occurred, then the failure process is stable and the

analysis is continued to the next increment of loads. On the other hand. new local laminate

failure would indicate an unstable fracture process and signals the initiation ofglobal failure.

This local-global procedure forms the failure evaluation of the progress failure model. Other

modes of failure can be included in the evaluation by the application of the appropriate criteria

at the local level of the analysis.

Progressive Analysis Scheme

The aforementioned components are assembled together as shown in Fig. ! to form the pro-

gressive failure model, in a typical analysis, the applied loads and initial damage state are

entered into the damage dependent constitutiverelationships to determine the effective dam-

age-induced forces. These resultant damage forces along with the applied forces are used in the

structural analysis algorithm to calculate the global structural response. The results are once

again sent to the constitutive relationships where the local stress/strain response is obtained.

The changes in the damage state are also determined at this stage by the damage evolutionary

relationships using the local ply stresses. The failure criteria are evaluated locally with the

updated damage state: if failure has occurred, global failure is examined. Next, the entire pro-

cess is repeated for the next load step. This model is coded into a computational program to

facilitate the analysis of engineering structures.

Numerical Results and Discussion

The proposed progressive failure model is employed to examine the residual life ofa crossply

laminated plate, subjected to fatigue loading conditions. A circular cutout is placed at the cen-

ter of the plate to produce stress gradients that are conducive to the growth ofsubcritical dam-

age. This configuration is similar to those used to model fastener holes found _n many com-

posite structures. Thus, by examining how the stresses are redistributed and damage

accunaulates near the fastener hole, information can be gathered to determine the merits of a

particular design. The dimensions of the rectangular plate used in this study are 25.4 by 50.8

m,n. The circular cutout has a dianaeter of 6.4 ram. A cyclic tensile load is applied at the nar-
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row end of the plate. Due to symmetry about the length and width of the plate, tile finite-

element mesh represents a quarter of the plate. It is discretized into 90 three-node triangular

elements, as shown in Fig. 2. The plate has a [0/902], laminate stacki ng sequence. The material

properties, shown in "Fable I, for AS4/350 I-6 graphite/epoxy have been used in the calcula-

tion. The fatigue load is applied at a cycle ratio of 0. I and follows the maximum stress history

shown iu Fig_ 3. The first 50 cycles consist of the ramp up to the test load. This is done in l)arl
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12.7 mm

to control the incremental changes to the damage state during the initial portion of the loading

history. In this simulation, matrix cracking is assumed to be the only form of damage mode

and because of the crossply stacking sequence, component failure is assumed to occur at the

first fiber fracture in the 0* plies.

The predicted accumulation of matrix crack damage in the 90* plies of a panel loaded at a

maximum stress of 184.0 MPa is shown in Fig. 4. The amount ofdamage is expressed in terms

TABLE I--I'l.i,-level material properties for AS4/3501-6 used in
simulation.

E,_ 146.9 GPa

E_L, 10.4 GPa

G,z 4.3 GPa

u,2 0.26

U__ 0.42
t0_v 0.128 m m

C_Ico 1 I 5 000 t_straita

GROWTII LAw PARAMETERS

/_ 4.42

fi 6.39



LOtl AL ON CONTINUUM |)AMAGt: MIiC4IAIqlC:,; (_L_QJ

L:)

03

G)

L

_m3×

o

)l.-

0 50

Load Cycles, N

FIG. 3--Maximum fatigue stress lliSIory ltsed in simulation (R = 0 1)

lg

le.

le

a

is

of the volume-averaged crack face displacement as defined by Eq I. At the end of tile load

ramp up, matrix damage has developed throughout the plate. The greatest damage being

located near the notch. This region of high damage gradient exphnds outward after 1550

cycles. The amount of damage also increases in the rest of the plate. However, after 7550

cycles, much of the damage evolution emanates from the region adjacent to the notch. This

shift in the damage evolution reflects the load redistribution occurring inside the laminate. The

corresponding axial stress history for the 0° plies is shown in Fig. 5. The effects of the damage

growth that occurs between 50 and 1550 cycles can be seen by the increase in stress near the

notch. The interesting changes in the stress distribution beyond this point in the loading his-

tory are not discernible from the stress contour plots; but examination of the numerical data

indicates load transfer taking place in a confined area adjacent to the notch. This decelerated

change in the stress distribution is in part due to the small fraction of the total load initially

carried by the 90 ° plies. Any loss in the load carrying capability in the 90* plies will translate

to small changes in the stress state in the 0 ° plies. The accumulation of damage further reduces

the load available for transfer. However, a sufficient amount of load is transferred to the 0 °

plies to cause fiber fracture and component failure after 7634 cycles. During the life of the

plate, the greatest accumulation of matrix damage is located at a region adjacent to the notch.

Rather than expanding outward, the damage intensifies in this region until first fiber failure in

the 0* plies. This behavior has also been predicted by Chang et al. [34] in crossply laminates

subjected to monotonically increasing tensile loading conditions.

The predicted cycles to first fiber failure at various maximum fatigue stress levels are shown

in Fig. 6. At the higher stresses, the load redistribution progresses rapidly from the formation

of the high-damage gradient zone to the failure of the first fiber. This indicates a sufficient

amount ofenergy was available after the formation ofthis zone to produce this result. At lower

applied stresses, a large portion ofthe available energy is expended during the formation of the

damage zone. Therefore, the intensification stage spans over a relatively high number of

fatigue cycles. The increase in the number ofcycles to failure from decreasing thc applied st rcss

at the lower stress levels is large. Decreasing the applied stress from 185.7 to 183.4 MPa

increases tile cycles to failure by more than 100 000 cycles. A possible cause for this rcsponsc

is related Io tile amounl of load redistribution taking place inside the lami,_atc. [_.ccall lhal

these predictions arc based on the assumplion that matrix cracking is the o_dy lypc of m:ltrix-
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FIG. 6 -- Predicted cycles to first fiber failure of fatigue-loaded plate with a circular cutout.

dominated damage present. The inclusion ofdelamination damage into the analysis will alter

the stress redistribution and damage accumulation. Its effects will be most apparent at the

lower stress levels where the delamination damage can initiate and accumulate before fiber

failure occurs. The number of fatigue cycles required for first fiber failure at these stress levels

will decrease due to the additional source of load redistribution. Since the stress redistribution

and damage formation are coupled, additional analysis and experimental verification would

be required before any quantitative conclusions can be drawn about effects of including

delamination damage. However, it would enable the current progressive failure analysis

framework to capture a more complete picture of the complex interactive process and enhance

the model predictions.

The type of information obtained from the simulation could be potentially very useful to

the designer or analyst. The ability to locate critical regions and to track the evolution of dam-

age i n these regions would allow designers to create safer and more efficient components. Alter-

nately, a damaged region detected in a component can be characterized and then entered into

the model to determine its effect on the residual responses so that it can be removed from

service at tile appropriate time. The proposed model demonstrates the feasibility of the con-

linuum-damage-mechanics approach. Further developments are in progress to achieve the

capabilities for atlalyz.ing more complex damage states.

The current anal:,sis assumes component failure to occur at the first fracture of fibers in the

prhmipal load carrying plies. This assumptiota is valid in narrow sDccilllCl|S wllerC there is not

SUltlcicnt arczl tO redistribute the tensile loads within these I)lics. In wider specimens, global
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Il;icltale can be xl:ildc; Ihtnx. the pro!:,rcssivc I_lilurc proccsscxtcllds bcwlnd Ihc litXl lilwr I_.ialurc

Ihcrcl_uc. litc full iUll)lctncnt,lli(m (l[ the Inatrix-donlin:tted d;iul:l!.'.e (?,.'(lltlli,,lll law,, and lilt:

introduction of fiber ['r:l,,'lur¢ internal st:lie variables and growth I:iw_ arc I'ulufc (ll_icclivcs (_l"

the rcscarch clli._ll. Ihis will bc followcd by the tnodcling ofconlprcsgivc I;iillilc triodes.

Conc|usi_lll

The use of continuum dalnagc nmchanics in the progressive I;ulurc nlodcl provides an clli-

cicnt means of modeling distributed damage found in laminated conlpositcs, l-,lch type of

damage is represented by a set of strain-like internal state vad:lblcs. The internal state variables

evolve with the accumulation ofdainagc at each material point. These values ;arc predicted by

danlagc cvolu lion rchltionshil)S that arc functions of the current state of the material including

all the damage present. Since tim formulation permits the gradual accuinulation of damage

and the concurrcnt growth ofdiffcrent damage types, the analysis reflects the events occurring

inside the laminate. Tim current framework operates in a time-stepping manner where the

stress distribution and damage accumulation predicted at each step are employed in the local-

global structural integrity evaluation. This ability to simulate the progressive failure proCess

will enhance the design and maintenance of iaminate, d composite structures by reducing the

dependence on experimental support.

Even though continuum damage mechanics is suited for the examination of damages that

are distributed in nature and fracture mechanics is applicable for the evaluation of well-defined

macrocracks, there are situations that require the incorporation of the two approaches. One

such case is the existence of a sharp notch in a composite laminate. In this instance, a damage

zone containing many distributed microcracks will develop ahead of this notch when load is

applied. To account for the stress redistributi_3n in this zone, continuum mechanics can be

used to determine the state of the material. These results can then be evaluated on the global

scale using fracture mechanics. Thus, rather than choosing one method over the other, they

should be viewed as integral units in the failure analysis of laminated composite structures.
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Abstract. The results of the so-called energetic approach to fracture for the cases of a sharp crack without and with a

cohesive zone are briefly reviewed with particular attention to the crack tip singularity analysis and to the issue of

energy dissipation due Io crack propagation. The case of a crack with a cohesive zone removing all thermomechanical

singularities is then further analyzed, focusing the attention on the question of the thermodynamic admissibility of

subcritical crack growth, and on some of the hypotheses that lead to the derivation of subcritical crack growth laws. A

two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed

by an example of its possible application.

1. Introduction

Subcritical crack growth (SCG), under both general and cyclic loading conditions, is a

phenomenon that has been receiving more and more attention during the last forty years.

Starting with early investigations mainly on fatigue in metals [1-9], current research covers a

wide variety of materials, especially those such as polymers [9-13] and ceramics [-14] that are

becoming important in the fabrication of composites. The phenomena of interest also include

phase transformation toughening and discontinuous crack propagation in polymers, R-

toughening by crack bridging in ceramics and interface evolution and .degradation both at

fiber-matrix interfaces in fiber reinforced composites and at the lamina-lamina interface in

laminated composites. In all these phenomena experimental research has shown the existence

of a zone, often referred to as a cohesioe zone or damage zone located at the crack tip, whose

special behavior relieves the stress and/or strain singularity that otherwise would be predicted

at the crack tip of a sharp crack and allows for some inelastic behavior to occur.

From the theoretical standpoint, the problem is that of relating crack growth to the load

history. In this sense, fundamental understanding has been provided by the energetic approach

to fracture [15-32] that showed [15-19] how subcritical crack propagation is strictly related to

the rate of energy dissipation in the vicinity of the crack front, although the distinction between

the surroundings of the crack, generically referred to as a process zone, and the rest of the body

is often unclear. Such an ambiguity leads also to inconsistencies in the development of a

thermodynamic theory of fracture. In fact, several theoretical studies in the continuum

thermodynamics of fracture, especially those by Cherepanov [15, 21] and Rice [22-23] and,

more recently, Gurtin [24-25] and Nguyen [27-32] have shown that, independently of the

global or local (around the tip) constitutive assumptions, a sharp crack with no cohesive zone

(i.e. a system of cohesive forces acting on the crack surface) is constrained to evolve according

to the Griffith criterion [20], the latter being a direct consequence of the second law of

thermodynamics. This result is in open contrast with many of the results obtained in fatigue,
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2.1. Basic eqmaion._

The thst two laws of thermodynamics, in the poiutwisc form, rcad [37.1

pfi = a#_ O - q_., + lJr, (I)

(<'g- ,,' o,
t,._+ \ T)., 7

where it = u(x_, 1) is the specific internal energy; p = (Xk, 1) is the density; s = s(xk, t) is tbe (total)

specific entropy; T = T(x_, t) is the absolute temperature; a o = ao(x _, t) is the Cauchy stress

tensor; sis = c_j(.x_, t) is the small strain tensor; q_ = q_C-\'_,t) is ihc heat flux; r = r(x_, t) is the heat
source.

The dot over a generic variable represents the inaterial time derivative dldt and xk is the

position vector. In addition to (1) and (2) we also have

aji.j + Pfi = 0, (3)

_ij = _(ui.; + u_./), (4)

where fi = fi(x_, t) and u_ = ui(xk, t) are the body force and the displacement vector fields,

respectively. As for the pointwise material behavior, we assume that it is described by the

following set of equations [33]:

a 0 = ais(_3_t,7",_),

qi = q_(e_l,T, T_, _"), (5)

u = u(/_kt, T, 9:."),

s = s(eki, T, 0g'),

such that

Oh dh

aiS = P a-_is; s = - a-T' (6)

where h = h(xk, t) is the Helmholtz free energy

h = u - Ts, (7)

and _" = _x"(xk, t) is a set of N internal state variables (n = I ..... N) whose evolution is governed

by N rate laws of the type

tl m ._-" = f_ (ekl, 7",_ ), I1,Ili = 1..... N. (8)

llli Iwtr
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/

Fig. I. Crack withoul a cohesive zone.

generic field variable tk, let

_b± = lira dp(Xk +__¢vk, t); (_ _+, Xk _ C(t) --/(t),

¢ ÷ - ¢- = [4].
(16)

By the above definition, each field variable is allowed to suffer at most a jump discontinuity

across the interior of the crack surface. The behavior of such variables in the neighborhood of

the crack tip will be discussed separately for each variable if and when the problem is

encountered. Following Gurtin [24--25] we define a circle D_ of radius tS, with center at thecrack

tip and translating with the crack tip itself. Thus, all points on the boundary dD_ of D_ are

characterized by the same velocity vector as that of the crack tip. The unit normal vector to ODr,

outward with respect to D_, will be called m_, as shown in Fig. 1.

2.2. Thermodynamics of a crack without a cohesive zone

In this section the key results of the continuum thermodynamics analysis of a moving sharp

crack without a cohesive zone are stated. For a complete derivation of the relationships reported

here see the works by Gurtin [24-25] and those by Nguyen [28-29].
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The sccond law of Ihcrmodynamics fi_r Ihe body B and Ihc crack lip alone, rcspcctivcly, can

bc proved u_ lake on the form:

f PO,,,_7"dA >>-0; (G-27o)[>_0. (21)
It

Remark 2.1. The second of (21) is nothing but the Griffith criterion:

[>0 if G>_27o.

Subcritical crack growth, i.e. J > 0 and 0 < G < 2)'0, violates the second e_ (21) and as such is

not thermodynamically admissible for the conditions described above (i.e. no cohesive zone). It

is important to realize that relationships (21) are independent of the chosen constitutive

equations as long as the resulting thermomechanical fields satisfy assumptions A! and A2, and

that they are a direct consequence of having assumed that the crack tip is sharp, i.e. represented

by a single geometrical point. Thus, theories that introduce a damaged zone around the crack

(with special constitutive behavior) but that still consider the crack tip as a single point in

general will not result in thermodynamical admissibility of SCG.

Remark 2.2. The temperature behavior at the crack tip is essentially determined by assumptions

A1 and A2 rather than the heat conduction law assumed. In fact, for the right hand side of (19)

not to vanish it is necessary that the heat flux be singular of order l]r. Thus, if we have a heat

conduction law in which the heat flux is proportional to the temperature gradient, then the

temperature field is singular at the crack tip, and the singularity must be weaker than l[r. In

particular, if the Fourier law of heat conduction is assumed, then T is singular of order log(r)

[29, 42--43]

(G - 2_o)[
T = 2k_ log r + more regular terms. (22)

The above equation shows that T has the sign of (G- 27o)/. This result reinforces the

significance of (21) and what was discussed in Remark 2.1 since subcritical crack growth would

imply that the absolute temperature becomes infinite and negative at the crack tip. This is

clearly thermodynamically and physically incorrect. Note that relationships (21) and (22) suggest

the interesting interpretation of a moving crack tip as a moving heat source,_ and this is

consistent with numerous observations of intense heating ahead of a propagating crack [42-43].

Remark 2.3. Through singularity analysis various authors, such as Rice [35], Kfouri and Rice

[36] and Nguyen [28-29], have shown that the quantity G is automatically null for the running

crack problem, for almost every type of material behavior except the thermoelastic one. In other

words, the quantity G, as a fracture parameter, is meaningless in most cases, such as in

viscoplasticity. Nguyen has also shown that this is due to the fact that G (as given in (20)) is

determined under the erroneous assumption that the field equations remain everywhere elliptic.

In [44], for a nonlinear elastic material, the governing equations of the crack propagation

problem have been shown to change their nature, becoming locally hyperbolic and therefore
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Surface energy is in fact an essential component of tile driving f_rcc in sintcring [50]. Note

that, assuming that the second law holds in the form given in (24) but no! in (21), SCG

appears to be possible only when solnc volumetric dissipation is present, in order Io compen-

sate for the negative conlribulion due Io Ihc crack advancement [18]. l'hus, even under Ihe

assumplion that inequality (24) holds, Ihc prcsenl thermodymtmic analysis is unable to cope

with tile problem of SCG in ceramic materials that behave in a virtually perfectly brillle
fashion.

In Section 3 it will be shown thal SCG can occur even under l.he reslrictions of (21) when a

dissipative cohesive zone is presenl ahead of the crack tip or, in other words, when tile crack

tip is no longer considered to be a single geometrical point but a finite length crack line

segment that can display a special characteristic behavior of its own. The dissipation analysis

for a crack with a cohesive zone will show that, in such a case, no problems arise concerning

tile temperature field and that a continuum thermodynamic theory consistent with SCG in

brittle materials can be provided.

2.3. Thermody,amics of a crack with a cohesive zo,e

As mentioned above, the analysis of the running crack problem (without a cohesive zone)

presents major difficulties in that the parameter G becomes meaningless except for materials

that behave, at [east asymptotically, as if they were thermoelastic. Moreover, the dissipa-

tion analysis leads .to uncertain results especially as far as the temperature field is con-

cerned. A way to overcome some of these difficulties, while remaining in the framework of

continuum thermodynamics, is to postulate the existence of a cohesive zone (c.z.) ahead of the

crack tip.

With reference to Fig. 2, a cohesive zone is defined as a portion of the crack line

C(t):{¢:0 _< _ _</_(t)} (a more formal definition is given later) such that along _t) _<_ _< B(t); a

system of cohesive forces is acting. At this moment it is not necessary to specify the nature of

the cohesive force system. From its definition it appears clear that a cohesive zone, even when

characterized by a certain opening displacement, has no volume associated with it. Thus, a c.z.

appears to be more a 'mathematical" entity rather than a 'physiCal' one, but, as it will be

shown later, its introduction into the model allows one to overcome most of the aforemen-

tioned problems in the context of continuum thermodynamics, without using nonlocai the-

ories. A c.z. is not to be confused with a so-called process zone. The latter is usually defined as

a region of finite volume around the crack tip and possibly all around the crack faces with

special constitutive equations that translate the behavior of the damaged material ahead of the

crack tip and in the crack wake. Note that ,in principle the existence of a process, zone does

not necessarily overcome both the problem concerning G and that concerning the singularity

in the temperature field since the crack tip is still considered a single geometrical point and

since the process zone constitutive equations are not, in general, those of a thermoelastic
material.

The crack is now defined as follows

c(t) =

c.z. =
- (251
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After Gurtm [26]. we (Icfine the crack mlcrnal energy per unit length (surface). c such tha!

",'o = COI1SI,

_:= _:(_, t),
LO,

O_<C <_ _.(t).

_(1) < _ < fl(l),

= fl(I).

(27)

An analogous definition can bc given to thc crack entropy qo

q_o = const.

¢ = _q,((, t),
I

LO.

0 _< ( _< :_(t),

_.(t) < _ < it(0,

= fl(0-

(28)

Let O = O((, t) >_ 0 be the crack absolute temperature, such that

3=T+=T -

V(: ( • c.z.
(29)

The above definition implies that the temperature field is continuous across the c.z. From

(27)-(29) the crack Helmholtz free energy _ is defined in the traditional way

¢ = e -- {pS. (30)

Given the above definitions, the first law of thermodynamics for the cohesive zone alone can be.

proven to take on the form

d f #(', f'("-- ed_ + 2yo02 = (¢,_, -- [q,]v,) d& (31)
dt o _(t} " d_(,1

Eqn. (31) can also be given the following local form

i: = a_6_ -- [q_]v,. (32)

A statement of the second law for the c.z. cannot be deduced using the same arguments

employed to derive (21), but rather it must be postulated. Thus, the second law for the c.z. alone

will be given the following global and local forms respectively, after Gurtin [26-1

+ 0, (33)

2 = (o + [q']v----!>1O, (34)
¢

where 2 = 2(& t) for _ < _ <//and 2 = 0 for _ =/3, is the intrinsic entropy production per unit

length in the cohesive zone. It can be proven that relationships (33) and (34) are consistent with
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Using the GSM theory (Halphen and Nguyen [20]) it is assumed that the c.z. free energy ¢

is a function of the opening displacement 8, the temperature 0 and, possibly, a set of internal

parameters representing the interface microstructure. For simplicity only one of such parameters

will be included herein and will be indicated by the symbol it. The present formulation differs from

the GSM theory in that the function _bis not required to be convex in the kinematic variable/5.

The total cohesive force a is assumed to be expressed by the following additive decomposition:

a = a ir + a e. (3.1)

a e is assumed to be the part of the total cohesive force that is mechanically conservative for

all processes constrained on hypersurfaces with 8 = const, and tt = const.. In other words, any
transformation with 8 = const., tt = const, and a ir = 0 is an elastic process.

Under the above assumption the c.z. free energy is therefore a function of the following type:

¢ = ¢(8, 8, it) (3.2)

definable in the following manner (Edelen [221):

1V$, 8, tt ¢($,8, it) = ¢o(8, it) + if- ae(A$; 8, it) d,k A E [0, 1] (3.3)

where it has been assumed that for any given pair 8 = const., tt = const., all admissible points

on the hyperplane 8 = const., tt = const, are reachable from the origin of said hyperplane along

a straight path. For the sake of simplicity and without loss of generality the function ¢o(8, tt) is

assumed to vanish identically:

¢o(8,/x) -- O. (3.4)

The above definition of free energy is clearly consistent with the classical one usually employed in

constitutive theories with internal state variables (see e.g. Rice [23]).

Eq. (3.3) implies that the ¢rir component of the cohesive force does not contribute to any local

energy storage mechanisms, whereas eq. (3.1) implies that erir expresses the mechanics of some

phenomena acting in parallel with the c.z. deformation process. Hence, cr ir lends itself to the

description of those dissipative phenomena, such as the c.z. nucleation process, that cannot be

fully described in terms of the chosen set of c.z. state variables. Clearly, neither eq. (3.1) nor eq.

(3.3) are sufficient to fully characterize the function a ir . In this regard it must be noted that if

a ir is assumed to be a function of the chosen state variables and possibly of their rates, such a

function cannot be totally arbitrary. In fact, in order for eqs. (3.1) and (3.3) to be compatible

the relationship linking 6 and a ir cannot associate a unique a ir to a given _ (for any fixed pair

8 = const., tt = const.) since, in this latter case, cr would have to replace a _ in the integrand in

eq. (3.3). In other words, eqs. (3.1) to (3.3) also imply that for any given 6 (and in particular for

= 0) the mapping $ _ (r it, and in turn the mapping 6 --* a, is in general set valued. Thus, the

constitutive assumptions reflected in eqs. (3.1) to (3.3) provide a possible solution to the problem

discussed in the introduction regarding the necessity for the mapping _ --_ a to be set-valued at

5=0.

For the proposed formulation to be completely acceptable we have yet to show that the force

a ir can be physically related to a particular crack or interface nucleation mechanism. In order

to achieve this result we will rely on considerations based on the second law of thermodynamics

and on a global thermodynamic analysis. The latter, presented in the next section, will show
that the field a ir and the field _, although seemingly unrelated at the local level, are conjugate

with respect to the total free energy of the system B tJ C. This in turn suggests that the proper



characterizationof the relationship between (7/r and 8 is expressed by a kinetic equation, that is,
an equation of evolution. In the present theory, the c.z. evolution will be required to conform to

the maximum dissipation principle. Such a requirement will then be formalized by assuming that
the c.z. evolution equation can be derived from a dissipation potential.

The decomposition in eq. (3.1), central to the present formulation, has been suggested explicitly

in a number of works available in the materials science literature (Verheulpen-Heymans [24]; Leonov

and Brown [25]). Gurtin [14], in his discussion of viscoelastic c.z. models, also concludes that a

decomposition such as eq. (3.1) can be introduced, but the issue of giving ¢rira consistent physical

interpretation and a proper evolution equation is left unaddressed. Eq. (3.1) has also been less

explicitly suggested by other authors such as Riedel [26] and Hui et al. [9].
Substituting eqs. (3.1) to (3.3) into eq. (2.20) we have

0¢

By the use of classical arguments of the GSM theory (Germain, Nguyen and Suquet [27]), we

see that equation (3.3) and inequality (3.5) yield the following c.z. state equations:

a_ 0¢ 0¢ 0¢ (3.6)
= 0---g' _=-b-O' 'c--abe

where t¢ is the local free energy conjugate of the state variable be.

From eqs. (3.6) and inequality (3.5) we see that the energy dissipation in the e.z. is given by

a _r . ii + _: . h > O. (3.7)

Having assumed that the c.z. thermodynamic state depends also on some internal variable be,

it is necessary to complement the set of c.z. constitutive relations with the appropriate equation of
evolution for the variable #. In analogy to eq. (2.9) we assume that

E O_I(_)

where the subscript I stands for interface.

(3.8)

4. GLOBAL THERMODYNAMIC ANALYSIS

As discussed in section 3, the cohesive force decomposition in eq. (3.1) and the c.z. free energy

definition in eq. (3.3) yield the desired result of a set valued relation between a and 6. However,
eqs. (3.1) and (3.3) fail to provide a complete characterization of the c.z. constitutive behavior since

the quantity a ir is left undetermined. The purpose of this section is that of completing the c.z.

constitutive equations by providing a thermodynamically consistent characterization of the force

cr it. In order to achieve this goal considerations based on global thermodynamics will be used. By

global thermodynamics we mean a thermodynamic analysis of the system at hand as a whole (almost

as if it were a single material point). A more precise definition is given in the excellent discussion

by Germain el al. [27]. Thus, similarly to what is done at the local level, the main objective of

the global analysis is the determination of thermodynamic potentials for the whole body. Such

potentials will be functions of all those parameters that one has to specify to fully determine the
amount of strain energy stored in the system at a given time. Said parameters will be referred

to as global state variables and they include the system geometric descriptors, the boundary data

and the internal microstructural configuration. Clearly, the global state variables in general belong



to an infinite dimensionalspace,contrary to what happens in the local theory. Apart from this

important distinction, Germain et al. [27] have shown that under quite unrestrictive assumptions on

the pointwise thermodynamic behavior there is an impressive formal similarity between the global

thermodynamic potentials and the local ones. In particular, one can find quantities that, although

loosely related at the local level, behave like thermodynamic conjugates pairs with respect to the

global potentials. Moreover, those global variables that cannot be directly controlled through the

boundary of the body can be shown to behave like internal state variables at the local level. In

fact, it can be shown that the evolution of global internal variables can be characterized using a

global dissipation potential. A remarkable example of the usefulness of these concepts has been

provided by Nguyen [16, 19] in the field of fracture mechanics and plasticity. Generalizing an earlier

analysis by Rice [28], Nguyen {16] has shown that the total potential energy of an elastic cracked

body can be used to define a global thermodynamic potential that behaves at the global level like

the Helmholtz free energy at the local one, and has extended this result to elasto-plastic systems.

In such a context, the crack energy release rate, in both elastic and elasto-plastic systems, has

been shown to be precisely the generalized thermodynamic force conjugate to the crack length with

respect to the global free energy (cf. Rice [28]). Furthermore, Nguyen [16] has reformulated the

Griffith criterion as a crack evolution law obtained from a global dissipation potential function of

the energy release rate. Other important applications of global thermodynamics can be found in

the field of homogenization theories for composite materials (cf. Germain et al. [27]).

In the present section the set of the global state variables (external and internal) for the system

at hand will be determined. The crack fields a/_ and df will be shown to be conjugate with respect

to the global free energy of the system. The existence of a global dissipation potential governing

the evolution of the (global) internal field 6 as a function of cr;_ will be postulated and a class of

evolution equations for the field _ will be obtained from said dissipation potential. In section 5

it will be shown that the formalisms developed in sections 3 and 4 can be given a clear physical

meaning and can be used in a great variety of practical applications.

Germain [29] has shown that the concept of global free energy for dissipative systems can be

derived by an extension of the concept of total potential energy. The total potential energy in the

sense of Germa_n [29] for the system/_ in Fig. 1 is the functional

/0_:[u, ud, fd, A,T,a, fl,$,#]= ph(E(u),A,T)dA- B fd-udl+ ¢(_,T,#)d_
(4.1)

where, 0 = T on c.z., and u = u d on OB E. For the moment, all the parameters listed within

brackets on the left hand side of (4.1) are assumed to be specifiable arbitrarily. This assumption

will be verified a posteriori with the intent of showing that in general the parameters c_ and/3 do

not satisfy such a requirement and therefore must be eliminated from the llst of independent global

state variables. Furthermore, the field _ will be shown to be a global independent field only when

the c.z. constitutive equations conform to the assumptions in eqs. (3.1) to (3.3).

The functional E can be thought of as a 9-parameter family of elastic total potential energy

functionals, each of which is obtained by computing the right hand side of (4.1) for an aribitrarily

given 9-tuple of said parameters. Since C is well defined for any given 9-tuple of parameters,

the latter are not required (at least at tiffs stage) to satisfy the equilibrium equations or to be

compatible with any actual evolution.

The satisfaction of the equilibrium equations, in a sense that will be made clear below, is now

used as a criterion to select a subfamily of potential energy functionals that will be later defined to

be the global Helmholtz free energy for the system at hand.

Among all possible displacement fields u a particular one can be found by specifying all other
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parameters on the left hand side of (4.1) and by solving the corresponding purely elastic boundary

value problem. The latter is defined as follows:

Given the fields u d, fd, A, T, df, and t_ on the corresponding domains of definition

find the field u E K such that the equilibrium equations (2.11) are satified,

subject to the boundary conditions in eq. (2.12).

where K is the set of all admissible displacement fields:

u ¢ C_(B)

K= u= u d Vt,Vx¢0B E

[u(¢, t)] = _(¢, t) v¢ • [_,/3]

[u]. > 0 v¢ • [0,/31

(4.2)

Note that a and [3 do not need to be explicitly specified since their position is implicitly assigned

once the field 6 is given.

In essence, the problem just defined is a classical elastic boundary value problem (BVP) where

together with the usual set of boundary data in eq. (2.12) some other (and less traditional) con-

ditions are specified, equivalent to the assignment of some eigenstrain fields. Thus, under the

assumption that the free energy h(E(u), A, T) is a convex function of E, the displacement field u

solution of the above BVP is unique and is such that

C[u; ud,...,/z] = min g'[u'; ud,...,p].
u'EK

(4.3)

Under these conditions, a unique global thermodynamic potential 7/for the system/3 can be defined

as the _-alue of £ corresponding to the field u solution of eq. (4.3) (Germain [29]):

7-([ud,fd, Ak, T,a,fl,5, tt] = min £[u';ud,fd, Ak,T,a, fl,_6, p].
u*EK

(4.4)

Globally, the functioned 7-I corresponds to the Helmholtz free energy h at the local level. Note that

since the field u is no longer considered as an independent parameter, it has been eliminated from

the list within brackets on the left hand side of eq. (4.4).

Once the potential 7/ is defined, it is possible to determine the thermodynamic conjugate

p_irs that characterize the crack energetics. In other words, it is possible to determine those

thermodynamic forces, analogous to the energy release rate in fracture mechanics, that govern the

c.z. evolution. In order to do this one needs to take derivatives of 7/with respect to the chosen global

independent state variables. Clearly, when referred to 7/the term derivative must be intended in

the sense of Gateaux (Sewell [30]). The notation 7-/.¢ will indicate the Gateaux derivative of "H

with respect to the quantity '¢', relative to a convenient topology.

The derivatives of 7-[ with respect to the fields u d and fa on OB and of the fields A and T in B

can be considered a classical result in global thermodynamics (Germain et al. [27]):

"HA k = -Bk(x, t) x • B; 7/,T = --.S(X, t) X • B;
(4.5)

7/,u. = f(x,t) x • aBE; 7-t,r_= u(x,t) x • OB_.

7/,T on C will be derived below along with the other results concerning the crack.

Next, the derivatives of 7"[ with respect to the crack state variables will be derived and discussed.

One simple way to obtain such derivatives is to compute the first variation of the potential "H and

11



apply the Reynold's transport theorem. Thus, recalling that the function ¢(8((, t), 0((, t), It((, t))
has been assumed continuous at ( = ¢r whenever _fa i_ 0 we have

_7-[ = - fB(S_T + Bk- _Ak) dA + faB_ f" _Sua dl- fas_ u- 8fa dl

- ff(cr - °a-_)._`5 d(- ff(_T + t¢ ._Sit) d( + ¢ I_ _Sfl

(4.6)

The top line of eq. (4.6) essentially represents the results already listed in eq. (4.5). Hence, recalling

that ¢(`5(3, t),O(fl, t), It(fi, t)) = 0 (where the symbol '=' signifies identically equal to), from eqs.
(3.1) and (3.6) we have

Furthermore, we have

7-/,`5 : --a ir 7"/,T= --_2 7-/,it = --_ on C.z.. (4.7)

7-t_ - 0 - _,,_. (4.8)

Equations (4.8) show that the global thermodynamic potentials 7Y and, in turn, c are indepen-
dent of the variables a and ft. An important consequence of this result is that the variables a and/_

cannot be assigned arbitrarily under any circumstance. This is in contrast with the usual outcome

of standard fracture mechanics analyses. In fact, in fracture mechanics a quantity such as 7-/_ is

in general non-null and represents the crack energy release rate according to the definition given
by Griffith [31]. If 7_,, (_) had not been identically null, then a (fl) could have been considered

a global internal variable and its evolution could have been characterized via a dissipation poten-

tial function of the energy release rate 7-/,_ (7-/,_) as it can be done in a more traditional fracture

mechanics context (cf. Nguyen [16]). In the present case neither (r nor fl can be considered global

internal variables. Their values during an actual evolution are therefore completely determined

once the c.z. constitutive equations are accounted for in satifying the equilibrium equations. The

quantity that replaces the energy release rate in expressing the driving force for the e.z. evolution is

the conjugate with respect to 7-/of the e.z. opening displacement, namely the field __ri- V( E [a, fl].
This latter point will be discussed in greater detail in section 6.

In view of the above result, it must be noted that if the c.z. constitutive equations were chosen

so that o" could be derivable from the free energy potential ¢, i.e. if tr i" = 0, even the first of eqs.

(4.7) would vanish identically. This does not only imply that the potential 7-/is independent of the

field `5 but also, and more importantly, that in reality a unique 7-/cannot always be defined due to

the third of (4.2) (7-/,`5 = 0 = £,`5 implies that `5 cannot be treated as a boundary data) and to the

assumption that the c.z. free energy is non-convex and that the elastic bifurcation/stability problem

associated to eq. (4.3) must always be addressed before anything can be said on the c.z. evolution.

Moreover, the latter is essentially determined by the equilibrium equations (totally determined in

the absence of e.z. internal variables such as It).

As mentioned in the introduction, the issue of elastic bifurcation and stability of a purely linear

elastic body with a non-linear elastic interface (i.e. non convex interfacial free energy with 0 "it _ O)

has been studied by Suo et aL [10] by establishing the existence of certain interface stationary waves.

In the present context, the same problem can be treated using standard variational calculus. The

loss of solution uniqueness for the problem defined in eqs. (4.2) and (4.3) can be readily seen by

studying the sign of the second variation of the potential £. Under the hypotheses that ¢rir = 0,
_f:£ takes on the form

¢52£ = _E. _ $E dA + &5 . 0,50,5

Since the function ¢ is not convex, the integral on the right hand side of inequality (4.9) may

become negative and overcome the positive contribution from the first integral thus leading to a

12



loss of uniqueness in the solution of the given boundary value problem. Note that if the system

at hand is fully elastic (as in the case of Suo et al. [10]) then inequality (4.9) governs both the

uniqueness and the stability properties of the problem.

When a non-null field a ir is included into the picture, bifurcation and stability become, at

least in principle, two separate issues and can be treated by studying the properties of the second

derivatives of the functional "H as shown by Nguyen [19] in the context of plasticity and by Nguyen

et al. [32] in the context of brittle fracture. This topic will be considered separately in section 6.

Going back to the global thermodynamic analysis, we now need to provide an expression for

the system global dissipation. In reality the part of the dissipation that is of interest here is that

associated with the microstructural rearrangements occuring in the system /_. Such a dissipation,

indicated by Dmic, can be determined by computing the difference between the time rate of change

of _ under isothermal conditions and the power expended on the body:

D,_i_ = Bk- Ak dA + • _ + _. ti) d( >_ 0. (4.10)

The result here above is certainly consistent with the third of inequalities (2.8) and with inequality

(3.7).

Relations (4.7) and (4.10) indicate that the field cr iT is the global thermodynamic force conjugate

to the field 8, and that the latter can be regarded as an internal variable at the global level.

Therefore, in the context of the GSM theory (Germain et al. [27]) the relationship between cr iT and

df must be given in the form of an equation of evolution. The latter, consistent with the principle

of m_imum dissipation, will be assumed to be derivable from a global dissipation potential convex

in the conjugate force crir:

(4.11)

Eq. (4.11) is formally identical to eq. (3.8). Note though that the potential wt(_¢) is a local

dissipation potential whereas f_t(q iT) is a global one. In other words, it is only through a global

analysis that the evolution equation in (4.11) can be declared thermodynamically consistent (at

least in the context of the GSM theory).

The existence of the potential f_l is one of the most important assumptions in the present

theory. The choice of expressing 6 as the subgradient of fit is motivated by the intent to construct

a theory applicable to rate independent models such as that by DugdaJe [2], as well as to rate

dependent ones.

With the introduction of eq. (4.11) the cohesive zone constitutive equations are complete. In

fact, although the first of eqs. (4.7) con be used to evaluate the field _r i_ at a given state once

everything else is known, it does not yield any information about the physically admissible cr ir

fields and their evolution. It is only through eq. (4.11) that the physics underlying the field ¢xir

enters the problem and can be given a proper mathematical formulation.

5. A FEW COHESIVE ZONE MODELS RE-EXAMINED

Before moving to the analysis of the differences between the present formulation of the running

crack problem and a more classical one (i.e. without a c.z.), a few c.z. models available from the

literature are now reformulated using the present thermodynamic framework.

The model introduced in section 3 can be schematically represented by the rheological analog

model depicted in Fig. 2. It essentially consists of two parts: a purely dissipative element, such as

the friction element of the Coulomb type in Fig. 2, placed in parallel with a non-linear spring that

in turn is placed in series with another dissipative element represented by the box with the symbol

/z.
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The simplest model that can be described in terms of the general one introduced herein is the

celebrated Dugdale model (Dugdale [2]). In its most elementary formulation, the Dugdale model

is expressed by the following relationships

0 ___ O'v < O"Y ::_ _ = 0; O"v = a Y =¢"0 < 6, < 8c_ (5.1)

where a,. = a .v, _, = _5-v and a Y and _cr represent the critical values for the cohesive force

and the c.z. opening displacement, respectively. The ¢r - _ graph corresponding to the eqs. (5.1)

is depicted in Fig. 3a.

(yi_.[_ _e

Figure 2: Mechanical Analog of the Cohesive Zone Constitutive Relations.
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Figure 3: The Dugdale Model.

Dugdale [2] introduced this model to estimate the size of the plastic flow region ahead of a

stationary crack. Thus, eqs. (5.1) are intended to describe a rigid perfectly plastic behavior, and,

from a thermodynamic viewpoint, a purely dissipative one.

Under isothermal conditions and assuming that the opening displacement 8 is the only c.z.

state variable, a purely dissipative interface can be readily modeled by setting ¢(df) -- 0. Moreover,

using some elements of rate independent plasticity (Moreau [33]), eqs. (5.1) can be recast in the

following variational form:

(a-a').$>O Va'6Co, Co=[o, arl, ¢rv =l rlFTT, l,,Yl=const. (5.2)

It can be shown (Moreau [34]) that constitutive relationships of the type given in eq. (5.2) essentially

describe a friction law of the Coulomb type.
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Eq. (5.2) can also be recast in a form identical to that indicated in eq. (4.11) as follows:

60lco(a) (5.3)

where Ico((7) is the indicator function of the convex domain Co:

0 if= e Co
Ic (a) (5.4)/ +oo if a ¢ CD

Eq. (5.3) is therefore the kinetic equation that governs the evolution of the Dudgale model. Note

that eq. !5.3) is more general than eq. (5.1) since it includes both the behavior for $ • u > 0 and
that forS-u<0.

Budiansky and Hutchinson [35] extended the original Dugdale model by including compressive

behavior for the study of crack closure effects during cyclic loading. Such a model can be refor-

mulated using eqs. (5.3) and (5.4) extending the domain CD to include a compressive cohesive
force:

CD -- (5.5)

Both the Dugdale and the Budiansky-Hutchinson models are represented by the simple rheologicM

model depicted in Fig. 3b. In section 6, eqs. (5.2) and (5.3) will be shown to be quite important

in the derivation of the Griffith criterion for brittle fracture as formulated by Nguyen [15-16].

A further rate independent generalization of the Dugdale model can be obtained by taking into

account some possible hardening or softening effects. One possible way to achieve this result is

to allow the convex domain CD to be history dependent. For instance, CD can be defined in the

following way:

co =-[0, (5.6)

In this case the evolution law relating a ir and _ cannot be expressed by eq. (4.11) since the

function _I(O "it) would depend on other variables in addition to a it. Furthermore, in the case of

strain softening behavior the property of local stability in the sense of Drucker would be lost.

Another way of proceeding is that of endowing the c.z. model with a convenient free energy

function schematically represented in Fig. 2 by the non-linear spring. Some examples of the possible

relationships between cr¢ and _ are shown in Fig. 4.

(ye

i

.-.._

Figure 4: A Few Possible (re - _ Relations.
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Assuming that ¢ = ¢(6), i. e./z = 0, the evolution law in eq. (4.11) remains valid and the strain

hardening/softening effects are accounted for via the effect of ere on erir. Consider, for example,

the following model:

¢(8)=¢o- ½6-A8, ¢o=const->0 A=A T , det(A)>0

a=a e+(7 i_, er e=-A8

- y Y -

(5.7)

For a one dimensional case with 8 • u > 0, the forces a, ere and erir are shown in Fig. 5a.

The model described by eqs. (5.7) is in essence a rate independent version of that recently

proposed by Xu, Hui, Kramer and Creton [36] for the description of crack growth along the interface

between two homopolymers toughened by all-block copolymer chains. Xu et al. [36] described the

loss of interface coherence using an idealized pull-out model. Indeed, force-displacement diagrams

like those depicted in Fig. 5a are qualitatively similar to those obtained in fiber pull-out experiments.

For such problems an interface free energy like the one proposed in the first of eqs. (5.7) can be

justified with the following qualitative argument. Consider the pull-out problem depicted in Fig.

5b, in which a rigid whisker of diameter d + e (( > 0) is extracted from a hole of initial diameter d

within a purely elastic matrix. When the whisker is still entirely surrounded by the matrix a certain

strain energy _b(8) is stored in the residual stress fields caused by the difference in diameter between

the whisker and the hole. Clearly, _;b(8) is a monotonically decreasing function of the displacement

8, with a maximum ¢o for 8 = 0 and a minimum equal to zero for 8 = L where L is the depth of

the hole in the matrix. As the whisker is pulled out of the matrix, such a strain energ.y is released

at a rate 0_;b/08 which is nothing but the elastic cohesive force er e and such that o"e • 8 < 0.

_} 5_ I ' L

..... ..................
(a) (b)

d+ £

Figure 5: Interface Model Corresponding to Fiber Pull-Out.

From eq. (3.1) we then see that

Ier " l>[ er I (5.8)

which can be interpreted by saying that the err component of the cohesive force facilitates the pull-

out action. The interesting element of this particular example is that the model in eqs. (5.7) does

indeed predict a global strain softening effect in the a - 8 curve, and that the energy dissipated

during separation is greater that the net pull-out work since eri_. d8 >_ er. dS. This last observation

may be significant in studies concerned with the determination of thermal effects at the interface.

In order to generalize the model in eqs. (5.7) to include rate effects such as those considered by

Xu et aL [36], it is sufficient to modify the dissipation potential fli(er i_) in the following way:

fli(o ;r) = + fl2(er

gtl(er/') = lc,, ft2(er +_) = ±eri_" er+r,2. _ = coast. # 0
(5.9)
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where 77is a scalar viscosity coefficient. In essence, eqs. (5.9) describe the rigid-viscoplastic cohesive

zone model, with instantaneous plasticity and linear viscosity whose analogical model is depicted

in Fig. 6a.

(I

(a)

i (I e

(b)

Figure 6: (a) Model by Xu et al. [361; (b) Model by Riedel [26].

As an example of a model with internal state variables, consider that depicted in Fig. 6b. Using

the formalism introduced in section 3, the equations describing the model are

= 6 _ + 6 p It = 6 p
(5.10)

¢(`5, t,) = ¢(`5 - `SP)

Thus, the state equations are

0¢ 0¢ 0¢ _. (5.11)
0,5 Og 06 p

The c.z. dissipation takes on the form

,Tir$+ a_gp >__O. (5.12)

Consistently with eq. (3.7) the variable `sv is assumed to evolve according to the following kinetic

equation:

gP e 0_I(_ _) (5.13)

In order to see that the equations here above can indeed be used to obtain a cohesive zone model

of interest, consider a case in which the dominant interface deformation behavior is creep plastic

flow. In this case then the following approximations are justified:

(5.14)
wl(o"_)= A(a_) '_.

Thus,

= A(_ - _r). (5.15)

where A and n are material parameters obtainable from experiments. In particular, if the viscosity

coefficient A is allowed to be a function of `5, e.g. A = B($) m_ and B, p, and n are constants, then

eq. (5.15) describes exactly the c.z. model for creep fracture proposed by Riedel [26]. A similar

model has been also proposed by Kramer and Hart [37].

17



6. COHESIVE ZONE MODELS AND FRACTURE MECHANICS

6.1. Introduction.

In the preceding sections a general c.z. constitutive theory has been presented. The proposed

model has been shown to be both thermodynamically consistent and to satisfy the requirement

that the relation cr _ df be set valued. As discussed in the introduction, in order for a c.z.

model to be applicable to a wide range of phenomena it should also allow for the prediction of
the transition from a fully cohesive interface to a cracked one, and, subsequently, for the analysis

of the crack propagation stage of the interface life. The purpose of the present section is exactly

that of confronting these last two issues. In particular, section 6.2 deals with the problem of

crack nucleation where the latter is seen as the evolution from full cohesion to the appearance of

microcracks whereas section 6.3 deals more properly with the running crack problem and analyzes
the differences and similarities between cracks with and without cohesive zones.

6.2. Cohesive Zone Models and Crack Nucleation.

In spite of the fact that they were not originally intended to study crack nucleation, interface models

in general carry an intrinsic capability of providing useful information about the crack initiation

process or, more specifically, on the possibility of microcrack pattern formation. As mentioned in

the introduction, this capability has been explored by Hui et al. [9] and more recently by Suo et

al. [10] by studying a bifurcation problem in which both the interface and the bulk behaviors are

elastic. In this case, the bifurcation problem coincides with that of elastic stability.

The present formulation of the interface constitutive equations, by including dissipative effects,

allows one to confront the interface bifurcation problem using methods developed in the field of

plasticity, in which the issue of bifurcation does not necessarily coincide with that of stability. From

a physical viewpoint this distinction is very important since the development of microcracking and

damage in most materials occurs, at least in its early stage, under global stability.

The purpose of this section is to show how techniques from the theory of plasticity can be

applied without significant changes to the study of the interface bifurcation problem.

For simplicity, the bulk material behavior will be assumed to be elastic and the c.z. constitutive

behavior will be assumed to be that described in eqs. (5.7) except for the assumption that the
function ¢(_) is now assumed to be general. Furthermore, the system B is assumed to evolve

under isothermal conditions, the external boundary data to be of the Dirichlet type only and the

interface is assumed to be initially fully cohesive. Given the above hypotheses, the potential _/
reduces to

: W(E(u , ))dA + --J0e (6.1)_[ua,_5]

where W(E) = ph(E) is the strain energy function (under isothermal conditions).

By definition, the potential H Mready includes all the information that can be obtained from the

boundary value problem that characterizes the equilibrium of the system/_, which, under the given

constitutive assumptions has been shown to yield a unique solution. Thus, if a loss of uniqueness is

to occur, it would appear in the solution of the rate problem that governs the interface evolution.

The rate problem for the particular case considered herein is constructed by noting that when the

domain CD(a it) of the admissible irreversible cohesive forces is time independent, the following

relation, usually referred to as the consistency condition, must hold:

&_rdf = 0 V(: E [0, fl] and Vt (6.2)
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Once the rate of the applied boundary condition fl d is given, the rate of the field (7 ir is obtained

by using the first of eqs. (4.7):

&it = H,66 _ + 7./,6udfld (6.3)

Now recall that the last of eqs. (5.7) can be interpreted by saying that the unknown vector

belongs to the set Ncg, defined to be the tangent cone to the set Co:

= I - > 0 Co} (6.4)

so that we have

&ir._ > 0 V( E NCD(ai_). (6.5)

Hence, the rate problem whose primary unknown is the field _ can be reformulated in the following
variational form:

(_ - 6)" (_.666 + "H,6udfl d) > 0 V_ 6 Nco(crir). (6.6)

Lions [38] showed that solutions to the variational inequality (6.6) exist if the tensor field 7Y,6 _
satisfies the following positivity condition:

_'-_,66_ > 0 V_ 6 NcD(ai_). (6.7)

Nguyen [19] showed that a unique solution to (6.6) exists if T/.6_ satisfies a positivity condition
stronger than (6.7), namely

_. 7-t,,56_ > 0 V,_ __Nc#(o "i_) (6.8)

where NcD(o'ir _ is the vector space generated by NCD(O "it) (i.e. the totality of all possible linear

combinations of the elements of Ncz_(crir)). Condition (6.8) is more restrictive than (6.7) because

it must hold on the space NCD(a it) which clearly includes NcD(a i_) as a proper subset.

Solutions to inequality (6.8), being subject to a more severe constraint than that imposed on

solutions to (6.7), identify bifurcation modes under stable conditions. A complete discussion of

inequalities (6.7) and (6.8) is certainly out of the scope of the present paper and therefore will not

be given here. Nonetheless, a few qualitative results can be established with little effort by simply

providing a more concrete form for the abstract expressions in both (6.7) and (6.8).

Consider the second variation of the functional 7-/, as required in inequalities (6.7) and (6.8),

under the requirement that the externally controlled displacement data remain fixed:

B 02W /_ _6" 02¢ ""627-/= _E- _--0--_gE dA + _-_oo d( > 0 (6.9)

where, by definition of 7Y, the field 6E is not arbitrary, but is a function of the variation 66 such
that

div(SS) = div(0-_6E ) = 0
(6.10)

6E = V( u) 16u = 0 on and [$u] = 66 on C

Having assumed that the function W is convex, inequality (6.9) allows one to establish that the

interface evolution problem formulated herein has a unique solution for all interface constitutive

models with a convex or null free energy ¢. The most renowned of such models is perhaps that
of Dugdale, which cannot therefore be used to predict crack formation from an otherwise sound

material via the use of bifurcation arguments. The Dugdale model, like any non-bifurcating model,

can only be used in fracture problems where a crack is present to begin with. Furthermore, in the
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present formulation, in order for a bifurcation in the solution _ to occur it is necessary to have a

non-convex free energy ¢.

In order to extract more information from inequality (6.9) it is necessary to rewrite it in such a

way that all integrals evaluated on the domain B are transformed into integrals evaluated on the

domain [0, ]3]. In general, the accomplishment of this task is quite difficult in that knowledge of the

functional dependence of the field/fE on the field 56 is required. Thus, for the sake of conciseness,

and with the intent of providing only a qualitative result, assume that an admissible variation _fu

of the displacement field u can be given the following form:

oo

Su = _--:aisin(ki- x) (6.11)
/=0

where the wave vectors ki (i = 1,..., oo) are to be determined as functions of geometry and material

properties and where
oo

[bu] = _ = _[ailsin(ki-z) z E C. (6.12)
/=0

Substituting (6.11) and (6.12)into (6.9) and employing the Reynold's transport theorem we obtain

f0_ { _oooj02¢']_27g = 4" /ha + _-7-x7_;? d{ > 0 (6.13)

where

6a = \0EOE fi a, ® k, cos(k,-x) v = \0--_--E a, ® ki cos(ki- x) v
i----0

(6.14)

Inequality (6.13) can be further manipulated and cast in the form indicated in inequalities

(6.7) and (6.8) to define a classical eigenvalue problem. For the purpose of this discussion it is

sufficient to note that, from eq. (6.14), the sign of the integrand in (6.13) essentially depends on the

magnitude of the bulk tangent elastic moduli relative to the interface elastic tangent moduli and

on a set of characteristic length scales associated with the wave vectors ki. Note that the strain

energy W does not need to be continuous across the interface. The above result is qualitatively

consistent with that obtained in a quite different context by Suo et al. [10], and therefore shows

that the treatment of the bifurcation problem suggested herein is a valid one.

6.3. Cohesive Zone Models and Crack Propagation.

We now turn our attention from the crack initiation problem to that of crack propagation. In classi-

cal fracture mechanics, i.e. in analysis without cohesive zones, the expression crack growth problem

indicates a moving boundary problem in which the primary unknown is usually the trajectory of

a single (non material) point referred to as the crack tip. The global thermodynamic analysis in

section 4 has shown that in fracture problems with a cohesive zone the primary unknown associated

with the crack is neither the trajectory of the point at _ = a nor that of the point at ( = fl (cf. eq.

(4.8)), but rather the time evolution of the field _. Thus, the problem with and that without a c.z.

appear very different, at least from a mathematical viewpoint. In reality, since the two problems

are intended to model the same phemomenon it is reasonable to expect some similarities between

them. The purpose of this section is therefore that of providing some insight on the relationship

between the classical running crack problem and that with a c.z..
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In order to relate the two problems it is necessary to constrain the c.z. to behave as much as

possible like a single geometrical point. Taking into account that the c.z. must have finite size by

definition, one possible way to impose said constraint is to assume that the c.z. is small with respect

to the rest of the crack surface, i.e. fl - a << a and to rigidify the c.z., i.e. to assume that during

crack propagation the crack tip behaves like a rigid wedge moving ahead of the physical crack tip.

This latter approach is not at all new. In fact, it concides with that followed by Barenblatt [1] who

formalized it through the following two assumptions (p. 59 in Barenblatt [1]):

A1 .... the area of the part of crack surface acted upon by the forces of cohesion can be considered

as negligibly small compared to the entire area of the crack surface.

A2 .... the form of the crack surface near the edges, at which forces of cohesion have the maximum

intensity, does not depend on the applied load.

Under assumptions A1 and A2 the function _((, t), _"E [a, fl] takes on the form

where

= _(X,/:) (6.15)

X=¢-a V¢E [_,fl], L:=fl-a=const.,

From eqs. (6.15) and (6.16) we also have

0)¢ .u <_0 VX E [0,L:]. (6.16)

.05 .05
= a_a = -a-_X. (6.17)

From eqs. (6.17) and (4.10) we see that the dissipation rate Dc due to crack propagation alone
becomes

0

De=&[ cr_r 0_
JL - dx. (6.18)

Eq. (6.18) indicates that assumptions A1 and A2 are certainly sufficient to render the trajectory
of the point at ( = a the primary unknown of the problem as in the classical fracture mechanical

formulation. Moreover, now that a has replaced the field _ as a global internal state variable for
the system J_ we have

- 7-/_ = J = (7ir
, "_--_Xdx. (6.19)

where J is therefore the generalized thermodynamic force conjugate to a. The force J can also be
expressed via the following decomposition:

J = G - R (6.20)

where

G= a.-_x dx and R= a¢.-_x d X. (6.21)

The quantities G and R are the energy release rate, as defined by Griflith [31], and the resistance

to crack growth, respectively. The quantity R is usually referred to as intrinsic fracture energy

and expressed by the notation 27. In view of the discussion given in section 5, R may not always
be a positive number. Eqs. (6.18) and (6.19) bring support to the claim made in section 4 that

when a c.z. is introduced into the formulation of a fracture problem, the generalized force er ir takes
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the place that the energy release rate occupies in the classical approach. The first of eqs. (6.21)

represents a generalization of a well known result obtained in the context of linear and nonlinear

elasticity by Rice [39].

Eqs. (6.18) and (6.19) suggest that a dissipation potential i_c(J) can be found such that the

crack evolution law takes on the form:

e Oat(J) (6.22)

consistent with the principle of maximum dissipation. In fact, _c(J) can be computed explicitly

under assumptions A1 and A2 once the dissipation potential ft(_r it) is given. As an elementary ex-

ample, consider the Dugdale model formulated in eqs. (5.2) to (5.4) with the additional assumption

that there exists a constant value _e of the crack opening displacement at which fracture occurs.

Hence, due to assumption A2, during crack propagation, every point in the c.z. experiences an

opening rate 6 = -506/0X. From eqs. (5.2) we then have

if -v>0 (6.23)
L 0 if_-v<0

Having assumed that _(X, £)" v is a monotone decreasing function of X, from eqs. (6.19) and (6.23)

we have

J= I J_ °'v a_ dx if&>0" o--_x (6.24)

( 0 if&<0

The integral on the top right hand side ofeq. (6.24) has the evaluation (cf. Rice [39]):

o -Y o- Y
"_X dx = -$c = const.. (6.25)

Letting Jet = _ ry " 6c, from the above equation we see that J E (0, Jet) ::_ & = 0 and that

& i_ 0 =_ J = 0 or J = J_. Thus, the kinetic equation that governs the evolution of the independent

state variable a can be given the following form:

& E Ol¢(J) (6.26)

where Iv(J) is the indicator function of the closed convex domain Co, = [0, J_]. Eq. (6.26) can

also be formulated in the following variational form:

(J- J*)& _ O vg* E Cj (6.27)

or

where

(G-G*)&>_0 VG*ECa Ca = [R, J= + R] (6.28)

)o¢k = O-6"OX dx = ¢(_¢) (6.29)

Note that in the specific case of the Dugdale model, at least according to the formulation given

herein,/l is always identically null. In general though, based on physical observation it is customary

to assume that R <_ Jc_ so that Cc = [0,Gcr] where Gw = Jc_.

The evolution equation (6.28) has been proposed by Nguyen [15-16] as a re-statement of the

Griffith criterion suitable for the formulation of rate independent brittle fracture problems. As

mentioned in the introduction, the derivation presented in this section shows that such evolution
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equationscanbederivedundersuitableassumptions(namelyA1 and A2) directly from the Dugdale
model.

The procedure with which eq. (6.28) was derived is quite general in nature. In other words,

given a certain evolution equation for the c.z. one can always construct, under assumptions A1 and

A2, a corresponding evolution equation for the global internal variable a that is derived from a

dissipation potential, where the latter can be explicitly constructed as shown above in the case of

the Dugdale model.

7. SUMMARY

The present work is in essence an extension of modern constitutive theories to include stationary

partially coherent interfaces. As stated in the introduction, the theory is built so as to satisfy

three fundamental physical requirements. First, the interface is required to be capable of strain

energy storage. It is assumed that such storage capability depends on the jump discontinuity

in the displacement field across the interface itself, the interface temperature and, possibly, its

microstructure. Second, the interface is assumed to be capable, at least in the initial stage of

its life, of transferring forces across itself even in the absence of interface deformation, where the

latter corresponds to a displacement field jump discontinuity as mentioned before. Physically, the

mechanism responsible for this type of behavior is assumed to be purely dissipative. Third, the

interface constitutive equations should permit the prediction of crack pattern formation from an

otherwise fully cohesive interface via bifurcation arguments. The rationale for these requirements
has been discussed in the introduction.

The first requirement has been formalized by the assumption that there exists a function _b

of the interface opening displacement, temperature and microstructure that is a work potential

for the interface. This idea has been originally explored by Gurtin [14] who provided a useful

thermodynamic theory for the development of the interface constitutive equations. Within such

a framework, requirement two has been formalized by a decomposition of the cohesive force tr

into two parts: tr _, (r i_. tr _ is assumed to originate from the interface free energy and, in this

sense, to be the expression of mechanically reversible transformations, such as bond stretching in

crystalline materials or fibril elastic stretching in polymer crazing. (7 ir is not assumed to have

an explicit and one-to-one relationship with the interface opening displacement. This allows the

interface to transfer forces of various intensity even under the assumption of perfect cohesion, i.e.

a situation characterized by a null opening displacement. The physics behind the irreversible part

of the cohesive force (7 i_ depends on the particular system at hand. For example, in the case of

single craze formation, tr ir can represent the average effect of the forces responsible for the craze

nucleation through secondary bond breakage. Such forces, which macroscopically appear to be

acting on the interface surface, do not originate from fibril stretching and for this reason are not

associated with a particular energy storage mechanism.

The global thermodynamic analysis presented in section 4 shows that the fields tr ir and 6 are

conjugate with respect to the global free energy of the system. This result leads naturally to

the hypothesis that the relationship between the fields tr i_ and 6 is governed by an equation of

evolution. It should be noted that global thermodynamics becomes an almost indispensable tool in

the thermodynamic analysis of multi-phase systems like the one considered herein (i.e. body-plus-

interface). In particular global thermodynamics is extremely useful in the analysis of composite

materials with an evolving internal microstructure.

The present theory has been shown to encompass most of the cohesive zone models available

from the literature and, as shown in section 6.2, to satisfy the third of the requirements listed above

under the assumption that the interface free energy is non-convex.
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In section 6.3 the proposed model has been shown to have another important characteristic,

namely that of naturally recovering the classical results of fracture mechanics once a macroscopic

crack propagates along the interface in a self-similar fashion. In particular, the relationship between

the interface dissipative behavior and the crack evolution law has been established.
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ABSTRACT

Close examination of the delaminated surfaces of laminated polymeric composites will

often reveal the presence of a damage zone ahead of the advancing delamination. In

thermosetting polymeric matrices, the damage zone will most likely contain micro-shear

cracks. Their presence can introduce nonlinearities to the response of the interface and

thus affect the growth of the delamination. The evolution of delaminations containing
this type of damage zone is examined. The formation of the damage zone is modeled

via a non-linear interfacial constitutive relationship that is based on a micro-mechanics

solution for distributed non-interacting cracks. The mechanical characteristics of the
interface constitutive relationship are examined. In addition, the delamination behavior

of a laminate possessing this type of interracial response and subjected to simulated low

velocity impact condition is investigated.

INTROOUCTION

Laminated polymeric composites are prone to the formation of delaminations when

subjected to low velocity impact loads. In addition to reducing the mechanical proper-

ties of the laminate, these delaminations can serve as initiators of other damage modes
and can cause the failure of the laminate. Thus, the ability to model the low velocity

impact damage process is crucial for the safe and efficient design of laminated composite
structures.

[t has been found from micrographic and fractographic examinations ofdelaminations

that a damage zone develops ahead of the delamination front [1-9]. The mechanisms in
this damage zone are dependent on the molecular structure of the resin rich interface.

Micro-shear cracks are found in thermosetting resins and crazes ate prevalent in thermo-
plastics. In general, the tendency to develop crazes or micro-shear cracks is dependent

on the distance between chain entanglements or crosslinks in the molecule [10}. When

57



tile molecularweightbetweensideattachmentsis belowa critical ,mmber, the crazing

mechanism is suppressed and micro-cracking is activated. The presence of this process

zone in the interface introduces nonlinearities to the interracial response and thus affects

tile propagation of the delamination in the interface. Therefore, it should be included

in the low velocity impact damage analysis, ltowever, the interface region containing a

process zone is not modeled in most low velocity impact damage analyses and of those

analyses that do take this resin rich region into account most are for modeling linear

elastic interleaves [11-13]. Some exceptions include Ladeveze's damage model in which

the interface is explicitly modeled [14]. In his model, the mechanical properties of tile

interface are governed by internal damage variables. Since the internal state variables are

volume averaged representations of the damage state, the stresses and strains obtained

from this analysis are also averaged quantities. Lo et al. [15] accounted for the effects

of tile process zone by employing the interracial constitutive relationships developed by
Needleman [16] and Tvergaard [17]. These constitutive models assumed that the force

normal to the interface behaves in a manner similar to the interatomic forces generated
during the interatomic separation. While the aforementioned models introduce nonlin-

ear response to the mechanical behavior of the interface, these models do not distinguish

between tile different mechanisms active in the process zone. The current paper will

focus on the development of delaminations in thermosetting matrix composites and thus
damage zones containing micro-shear cracks will be considered. An interface constitutive

relationship adapted from a micro-mechanical solution for a micro-cracked solid will be

employed in the analysis.

INTERFACE MODELING

\Vhen the delaminated interfaces are examined optically under magnification, the pres-

ence of the micro-shear cracks is revealed by surface artifacts that appear as regularly

stacked arrays of platelets. Their appearance is very much reminiscent of rows of domi-

noes that have been tipped over. This surface feature, commonly referred to as "hackles",

is formed by microcracking perpendicular to the plane of principal stress in the resin rich

interface [4!. Morris [9] has suggested that the hackles are formed in a peeling manner

while Purslow [7] has proposed the coalescent of the micro shear cracks as the cause of

the hackles as shown in Figure 1. Experimental evidence indicates that the spacing of

the platelets appears to be related to the opening mode of the delaminated interface

[18). Under mode I opening condition, the hackle pattern may not be present, but as

the contribution from mode II opening is increased, the spacing between the platelets

becomes smaller. Therefore, it can be assumed that the micro-shear crack spacing also

decreases with increasing mode I[ loading contribution. These experimental observations

now serve as a guide in our development of an interface constitutive relationship.

In the current study, the response of the interface is assumed to behave isotropically
when no micro-cracks are present. As the load is increased and the micro-cracks ac-

cumulate, the mechanical properties of the interface are degraded in accordance with
the orientation and distribution of the microcracks. This then causes the mechanical re-

sponse to behave orthotropically. For the case of non-interacting cracks with an arbitrary
crack orientation distribution, the effective moduli for this type of material have been

calculated by Kachanov. This method is based on the superposition of the solution for

the averaged crack surface displacement of a single isolated crack subjected to remotely

applied stresses. Since the mutual positions of the cracks do not enter into the analysis

under the non-interaction assumption, the overall effect of the crack array is simply the

sum of the contribution from each isolated crack. While the non-interaction assumption

may not be suitable for some crack distributions, it does simplify the calculations and

yields an approximation of the mechanical response for those distributions. The elastic
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potential of the crackedbody in a state of planestresswasexpressedby Kachanov[19]
as

_r

_ 12 o+ - + Eo (1)

where L, is the Poisson ratio, E is the Young's modulus (The subscript "o" denotes the
E..

undamage isotropic properties and for a state of plane strain, Eo is replaced with

and uo with "'1--2-_-), oil are components of the stress tensor, and &,k is the crack density

tensor, defined by
M

1
= (z..n.. nm ) (2)

rrl-_l

where the summation is performed over the M number of cracks found in the represen-

tative area, A. lm and n,_, are the length and components of the crack surface normal of

the _n _h crack, respectively. The compliance tensor, S,jkp, of the cracked solid is obtained
from

O2f

S,j_ v = Oa,jOo_v. (3)
i

Since the crack density tensor is a real symmetric tensor, it can be expressed in terms

of its principal values as follows:

o,: = plel,et, + p2e2,e2, (4)

where Pl and P2 are the principal values and el and e2 are the principal vectors. This is a

convenient reference frame to work in as the material orthotropy axes are coincident with

the principal axes of the damage density tensor. If all the cracks in the representative

area are oriented normal to the e2 axis, Pl is equal to zero and the effective moduli have

been found by Kachanov to be

E1 = Eo

Eo

t£,2--
I + 27rp2

1,'12 _ U o

(s)

(6)

(7)

(8)

(9)

_.,to

U21 =-

1 + 27rp2

Go
Gt2 --

where Go is the undamage shear modulus. Note that these effective moduli are referenced

to the principal crack density axes. "1"o obtain the effective properties referenced to

another set of coordinate axes, the stiffness tensor is first constructed using the quantities

shown in Equations (5-9) and then transformed to the new coordinate axes.

The crack damage tensor as defined by Equation (2) requires the knowledge of the

number of cracks in the representative area, the individual crack length and their spatial
orientation. Since there could be many micro-cracks embedded in the resin rich inter-

face, simplifying assumptions are taken to maintain tractability of the problem. Base

on eJ(perimental observations that the micro-cracks form perpendicular to the plane of

principal stress, the initial orientation can be determined from the stress state just prior

to initiation. Although as the micro-crack grows, the stress state will change and cause
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the micro-cracksto divergefrom their initial orientation, it will be assumedthat the
micro-crackorientation remainsconstant.Furthermore,subsequentmicro-cracksin the
representativearea will sharethe sameorientation. Each micro-crackis assumedto
grow instantaneouslyto a final crack length,1, as dictated by an interfacial thickness

parameter, t,.,, as given by

t = at,., (10)

where /3 is the micro-crack length scaling factor. The accumulation of the micro-cracks

is related to the maximum interfacial separation experienced by the representative area

during the loading history in the following manner

where r_ is the number of micro-cracks in the representative area, ut is the tangential

interracial separation, and ./is the micro-crack accumulation parameter. Thus, when the

interface is only opening in mode I, there will not be any accumulation of micro-cracks

and as the mode II separation is introduced, the micro-cracks evolve accordingly. Finally,
the failure of the interface is defined to occur when

where a,_ is the normal component of the interfacial separation and 6or, is a critical

strain-like constant. The above desciption is similar to the phenomenological models

previously proposed by Needleman [16] and Tvergaard [17].

PROBLEM APPROACH

This interfacial constitutive model is incorporated into an in-house finite element code

to facilitate the analysis. The damage zone is modeled in a manner similar to the

Dugdale-Barenblatt cohesive model [20, 21]. In this code, the delamination propagates

along the prescribed inter-element boundaries on which the tractions are specified by the

interfacial constitutive relationship. Due to the nonlinearity introduced by the micro-

cracked process zone, the virtual work equation is solved in incremental form, resulting

in [22]:

v _ I/''_ "6C,,_lA,_16Acqd LvTi"+a"'AuidS- /vO'ij AeiidV (13)

where CU_I is the material tangent modulus tensor, _ij is the infinitesimal strain tensor,

Ti is the traction vector, Aui is the displacement increment vector, and o'ii is the stress

tensor. Also, the domain of interest has interior V and boundary OV. The superscript r

and r + Ar denote quantities at time r (which are assumed to be known) and quantities
at time r + ZXr, respectively. In order to focus on the effects of the interface model, the

modulus tensor, CO;a, is everywhere constant and linear elastic except at the interface.

The approximate nature of Equation (13) is due to the deletion of the higher order terms

in &u, during the the incrementalization process. To account for this approximation, a

Newton-Raphson iteration scheme is employed for each increment of boundary tractions.

Tile displacement increment is thus successively updated as follows for the j,h iteration:

= {A.b-, + {An.}, (:4)
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where{A_u}j is obtainedby solvingthe followingon the jth iteration:

[K]T{AAu}, = { FT+a_}-{R_+ar}J-I (15)

where [K] is the global stiffness matrix, {F} is the global force matrix, and {R} is the
global reaction matrix.

Equations (14) and (15) are solved recursively until the following convergence criterion
is satisfied:

11 II, - II A,, II,_, r,o, (16)
!i  -II,

where rtot is a user specified convergence tolerance and the quantities bracketed by the
double vertical bars are the Euclidean norms.

COMPUTATIONAL RESULTS

It was mentioned previously that the response of the interface is dependent on the

number of micro-cracks: the individual crack lengths: and tile spatial orientation of the

micro-cracks. How these factors affect the mechanical response will be examined in this

section. This is followed by an analysis of a laminate possessing this type of response at
the interfaces.

[n this section, all the micro-cracks are assumed to be oriented at 45 ° unless otherwise

specified and the undamaged mechanical properties shown in Table 1 are used in-the

calculations. The first factor to be examined is the crack density. Since the number of

micro-cracks, as shown in Equation (11).. is related to the maximum shearing interracial

displacement via the parameter .\; this parameter serves as a convenient representation

of the crack density when comparing the effective properties at a given interracial dis-

placement. Figures 2 and 3 show the effective values for two components of the stiffness

tensor. C,_,_ represents the component normal to the plane of the interface and G,_t, the

shearing component. For _ = 0.0, no micro-cracks are accumulated and thus the linear

elastic response is obtained. At other values of .\: it is observed that the majority of

the stiffness reduction occurs during the early part of the damage accumulation. The

stiffness normal to the interface shows the greater percentage change of the two compo-

nents to the accumulation micro-cracks. In both cases, the effective properties appear to

approach "saturated" values as the micro-crack density increases. This is in accordance

with the expressions for the effective moduli shown in Equations (5-9), but these "sat-

urated" properties may not be reached in the analysis or in the actual material as the

interface may suffer catastrophic failure at a lower crack density.

The effects of the micro-crack length on the normal and shearing components of the

stiffness tensor are shown in Figures 4 and 5. In this set of data, the micro-crack

lengths are normalized by the interracial thickness parameter, t,,_t, to yield the scaling

factor, /3. The most distinct feature of this set of results is the manner in which the

mechanical properties are reduced. For the shorter normalized lengths, the decrease in

the effective stiffnesses is more gradual than for the longer micro-crack lengths. The

results for ,_ = 0.2 appear to decrease linearly as compared to the results for the other

micro-crack lengths. While the trends observed for the various micro-crack lengths are

similar to those observed for the various crack densities, the effects of changing the micro-

crack length are more pronounced as the crack densitv tensor defined in Equation (2) is
dependent on the micro-crack length to the second power and the number of micro-cracks

only to the first power.

The last parameter to be examined is the orientation of the micro-cracks. As shown

in Figure 6= the normal stiffness component, C,_,, decreases with an increasing number
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of micro-cracks. Tile majority of tile decrease occurs at the early stages of damage

accumulation with the smaller angles showing the most decrease in stiffness. For a

given number of micro-cracks, the change in the effective stiffness for a change in the

orientation angle is greatest in the vicinity of 45% When the orientations are near 0 ° or

90 °, variation in the orientation angles has only a relatively minor effect on the effective

stiffness. On the other hand, the shearing stiffness exhibits the opposite trend, as shown

in Figure 7. The effective shearing stiffnesses for angles between 30 ° and 60 ° are almost

identical for a given number of micro-cracks. Furthermore, the effective shear stiffness

response is identical for angle pairs that are oriented the same number of degrees above

and below 45 ° (eg. 15 ° and 75°.) Finally, the results indicate that the effective shear

stiffness curves intersect at a common point for a non-zero number of micro-cracks. The

order of relative stiffnesses at a given damage state reverses at this point.

The results presented in this parametric studv reflects the mathematical characteris-

tics of the interfacial constitutive model. This should be correlated with experimental

measurements to determine the range of response in which the model assumptions are

valid. Consideration must be taken when evaluating the assumptions to the possibility

that the interface may have failed before reaching some of these responses. In addition,

experimental measurements of tile energy required to separate the interface will assist in

the selection of the model parameters.

Now that the characteristics of the interracial constitutive model have been examined,

some of its effects on alaminated composite is examined. Because of the interest in the

development of low velocity impact induced delaminations, the analysis will be set up

to approximate the low velocity impact damage event. At the present time, the analysis

is model as a two dimensional end-clamped center-loaded bending problem. The impact

induced mid-span displacement is simulated by monotonically increasing displacement

applied under quasi-static conditions. The stresses in the individual layers and the resin

rich interface are obtained from the finite element analysis. Delamination propagation is

evaluated at each displacement increment and if the conditions are sufficient for propaga-

tion, the amount of growth is calculated and the corresponding changes in the interracial

properties are updated for the next displacement increment. This procedure is repeated

until the maximum mid-span displacement is reached.

The end-clamped center loaded bending configuration shown in Figure 8 is utilized for

the analysis. This laminate has a [0a/904] stacking sequence and possess the ply" level

mechanical properties shown in Table 2. The interfacial parameters are listed in Table

3. Due to the low transverse strength of the lamina, a transverse matrix crack will often

appear in the mid-span of the 90 ° layer upon the application of the displacement. This

transverse matrix crack then serves as the initiation point for the delamination at the

00/90 ° interface. In order to focus on the evolution of this delamination, the transverse

matrix crack is assumed to exist prior to the application of the mid-span displacement.

Since the damage state is assumed to be symmetric about the mid-span, only the right

half of the span has been modeled by the finite element analysis.

Figure 9 shows the evolution of the delamination with respect to the mid-span dis-

placement for several values of the micro-crack accumulation parameter, k. The results

indicate that the case with the largest value of the ,\ (,\ = 1.0ES) has the highest rate of

delamination growth while the lower values of .\ (.\ = 1.0E2, 1.0El, 1.0) have the slow-

est rates of delamination growth. There are only minor differences in the delamination

evolution predicted by the lower values of .\. Since these values translate to a smaller

number of micro-cracks, the delamination response may be close to that of a laminate
with alinear elastic interface. Common to all the cases considered is the increase in the

rate of delamination growth when the delamination reaches a normalized length of 0.1.

As shown in Figure 10, this increase corresponds to a change in the mode of interfacial

separation. The delamination starts out opening in a mode [l dominant manner, then
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changesto modeI dominancewhenthe "critical" delaminationlength is reached.The
switch to modeI dominancewould indicate a reductionin the influenceof the micro-
crack damagezoneas the delaminationpropagates.This is becausethe accumulation
of the micro-cracks,in this model,is dependentonly on the tangential componentof
tile interracialdisplacement.However,bychangingthe laminatestackingsequenceit is
possibleto givethe damagezonean increasinginfluenceasthe delaminationgrows.

The reactionforceat thepointof mid-spandisplacementapplicationisshownin Figure
11. This result correspondsto .\ = 1.0E5. As the mid-spandisplacementis increased
andthe delaminationgrows,the transversestiffnessof the laminatedecreases.While the
responseappearsto berelativelysmooth,closeupexaminationof the force-displacement
responseindicatesinstabilitiesin the form of suddendrops in tile reactionforce when
the delaminationgrows. Figure 12showsthe drop in the reactionforcecausedby the
delaminationinitiation. After thisdrop, the reactionforceincreaseswith increasingmid-
spandisplacement.Thenextdrop occurswhensufficientmicro-crackshaveaccumulated
in the damagezonefor thedelaminationto advance.From Figure11, it canbesurmised
that the transversestiffnessafter the suddenforcedrop is lessthan tile stiffnessprior
to the delamination propagation. Similar behavior has beenobservedexperimentally
by Jacksonand Poefor quasi-isotropiclaminates 123]. They noted that the ability to

predict the damage dependent reaction force is important in the use of the impact force

as a scaling parameter [or the impact response of laminates.

CONCLUDING REMARKS

The formation of a damage zone containing micro-shear cracks and located ahead

of a delamination crack is accounted for in this analysis of delamination evolution in

polymeric laminated composites. A sample of the results is presented in this paper.

In the development of the interracial constitutive relationship, consideration is given

to the geometric characteristics of the micro-cracks. Since this interfacial relationship
is based on a micro-mechanics solution that assumes the non-interaction of the micro-

cracks, experimental verification must be performed to determine the range of responses

in which this assumption is valid for the current application. The process in which the

micro-cracks lead to the failure of the interface also requires further examination. Two

possible sequences are mentioned in this paper. Both seem plausible and their occurrence

is most likely dictated by the loading condition. The interfacial failure criterion should

be updated to reflect this. These issues will be the subject of future investigations.
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Table 1. Undamagedlsotropic InterracialConstitutive Properties

Eo 1.4Msi (9.65GPa)

uo 0.3

0.5 Msi ( 3.45 GPo )

Table 2. Ply Level Mechanical Properties for Laminates Tested

E_ 17.4 Msi (120.OGPa)

Ev 1.4 Msi (9.8 GPa)

E: 1.4 Msi (9.8 GPa)

G_ 0.8 Msi (5.2 GPa)

Gy_. 0.5 Msi (3.5 GPa)

u_ 0.3

vy: 0.3

Table 3. Interracial Model Parameters for End-Clamped

Center-Loaded Bending Test Case

Eo 1.4 Msi ( 9.65 GPa )

vo 0.3

Go 0.5 Msi ( 3.45 GPa )

_,, i).oo58i,_.(o._5,,-,_)
.\ I00000.0

t,,_t 0.0002 in. ( 0.01 mm)

3 l.o
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Figure 1. Possible modes of hackle formation: a) peeling [9] and b) micro-crack coales-
cent [7].
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ABSTRACT

The durability and damage tolerance of laminated composites are critical design

considerations for airframe composite structures. Therefore, the ability to model damage

initiation and growth and predict the life of laminated composites is necessary to achieve

efficient and economical structural designs. The purpose of the research presented in this

paper is to experimental2y verify the application of the damage model developed by the

authors to predict progressive damage development in a toughened material system.

Damage growth, stiffness degradation, and residual strength were experimentally

determined for cross-ply and quasi-isotropic IM7/5260 graphitefoismaleimide laminates due

to monotonic and tension-tension fatigue. The damage model, which has been

implemented into a finite element code, was used to predict the stiffness loss and residual

strength of unnotched and notched laminates. The model predictions were in good

agreement to experimental results for several different fatigue loading histories and several

different laminate stacking sequences.
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Introduction

Because of their light weight and high specific stiffness, laminated continuous fiber-

reinforced composite materials are being used in some primary components in aircraft

structures. However, when subjected to high service loads, environmental attack, impact,

or a combination of any or all of the above, laminated composite materials may develop

damage. As the service load or the time in service increases, damage develops and grows

and could eventually reduce the residual strength of the structure.

There are four main types of damage. These are matrix cracking, fiber-matrix interface

debonding, delamination, and fiber fracture. Usually, matrix cracking and fiber-matrix

interface debonding are the first forms of damage to occur, followed by delamination, and

f'maUy fiber fracture resulting in catastrophic failure. While matrix cracking is usually

arrested at the fibers or adjacent plies, it will result in a redistribution of load to the

surrounding regions. As a result, these surrounding regions contain stress fields which are

favorable to the initiation and propagation of additional damage. During the accumulation

of subcritical damage, changes in material stiffness and strength results in the load

redistribution until the principle load-carrying plies are unable to support the load, in which

case, catastrophic failure occurs.

The initiation and propagation of damage is one of the problems in using laminated

continuous fiber composite structures. To address durability and damage tolerance

requirements, damage must be modelled and methods developed to predict the residual

strength and life of composite structures. For example, one of the most complicated

structural configurations is that of built-up laminated composite structures connected by

mechanical fasteners such as rivets. These laminates with fastener holes develop local

damage that cannot be easily treated using stress concentration factors. Another example is

the non-visible damage that develops during foreign object impacts and ground handling

accidents. Current methods for treating these local damage details are empirical and very

conservative. Therefore, an accurate model of the damage initiation and propagation will
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enhancecurrentanalysisanddesigncapabilitiesthusleadingto improvementsinstructural

efficiency.

Manydamageprogressionmodelsarebeingdevelopedtomodeldamageandpredict

life. An exampleof thetypeof microcrackdamagethatis currentlybeingstudiedby

damagemodelsis shownby thex-rayradiographin FigureI. Thisdamageis both

stackingsequencedependentandloadinghistorydependent.An overviewof damage

resultingfrom fatigueloadingin compositeshasbeenpresentedby Reifsnider[1,2]. Some

researchershavetriedto modelthisdamagebyconsideringeachcrackasaninternal

boundaryandthestressor displacementfieldsareobtainedeitherinclosedformor

numerically,suchasin finite elements.Thisapproachworkswell aslongastherearea

relativelysmallnumberof cracks.TalugandReifsnider[3] haveobtainedf'mitedifference

approximatesolutionsto equilibriumequationsto solvefor interlaminarstressesin

compositelaminates.The"damagetolerance/failsafetymethodology"developedby

O'Brien[4] is anengineeringapproachto ensuringadequatedurabilityanddamage

toleranceby treatingonly delaminationonsetandthesubsequentdelaminationaccumulation

throughthelaminatethickness.Chang[5] developeda progressivedamagemodelfor

notchedcompositelaminatessubjectedtomonotonictensileloading.Thisparticularmodel

assessesthedamageandpredictstheultimatetensilestrengthin laminateswith arbitrary

ply-orientationsviaaniterativecombinationof stressanalysisandfailureanalysis.Chamis

[6] studiedstructuralcharacteristicssuchasnaturalfrequenciesandbucklingloadsandthe

correspondingmodeshapesduringprogressivefractureof angle-pliedpolymermatrix

composites.Thisstudyconcludedthattheindividualnatureof thestructuralchangewas

dependenton laminateconfiguration,fiberorientation,andtheboundaryconditions.The

modelproposedby Talreja[7,8,9]incorporatesinternalstatevariables(ISV's) for matrix

cracksanddelaminationsandexhibitsplystackingsequencedependence.TheISV'sare

strain-likequantitieswhichrepresentthedamageasvolumeaveragedquantifies,i.e.,a

continuousmedium.



The treatment of a damaged volume of material as a continuous medium and the

representation of the damage with averaged quantities was first proposed by Kachanov [10]

in 1958 and is referred to as continuum damage mechanics. From this concept of

averaging the effects of microcracking in a small local volume, the authors developed a

damage model for laminated composites [ 11-16]. This damage model utilizes internal state

variables (ISV's) and is phenomenological; however, it is formulated at the ply and

sublaminate level and accounts for the influence of stacking sequence. The model has been

recently implemented into a finite element analysis code and has the capability to predict

damage growth and residual strength for monotonic and tension-tension fatigue loading

histories. The model was originally developed for brittle graphite/epoxy composite

systems but has been extended to also address toughened polymer matrix composites. This

paper will present results t'or both unnotched and notched specimens subjected to several

different monotonic and fatigue loading histories.

4

The Allen and Harris Model

The damage model of Allen and Harris [ 11-16] was originally developed to model the

behavior of microcrack damage in brittle epoxy systems and has recently been extended to

toughened polymer systems. The model predicts the growth of intraply matrix cracks for

monotonic tensile loadings and for tension-tension fatigue, the associated ply level damage-

dependent stress and strain states, and the residual strength of laminates with geometric

discontinuities. The model also accounts for the effects of delaminations but uses an

empirical relationship that requires the user to supply an estimate of the delaminadon area.

The empirical relationship must be used because the model currently does not calculate free

edge interlaminar stresses. A summary of the model can be found in the literature [17].

The model uses internal state variables (ISV) to represent the local deformation effects of

the various modes of damage. Loading history dependence is modelled by ISV damage



growth laws. The progression of damage is predicted by an iterative and incremental

procedure outlined in the flowchart shown in Figure 2. This entire progressive failure

analysis scheme has been implemented into the finite element formulation in the NASA

Computational Mechanics Testbed (COMET) [18] computer code. The fast block of

Figure 2 is a description of the information needed as model input A FORTRAN code

consisting of the damage dependent constitutive model and a damage growth law for matrix

cracking was incorporated into a classical lamination theory analysis to produce effective

lamina and laminate properties for unnotched laminates. The program is called FLAMSTR

(Fatigue LAMinate STRess) [19] and makes up the first constitutive module. The fourth

block is a damage dependent finite element analysis code [18] from which the second

constitutive module performs a ply level elemental stress analysis and simulates damage

growth via damage growth laws for each element. The damage growth calculations, block

six, are used to update the damage state, block seven, for the notched laminates. For

unnotched laminates, only the first constitutive module is needed to update the damage

state.

The material property descriptions required for the model include standard ply stiffness

and strength data determined in the usual manner. In addition, the tension-tension fatigue

matrix crack growth law must be determined from test data obtained from the [0/902/0]s

laminate. Under tension-tension fatigue, matrix cracks accumulates in the 90 degree layers

and, therefore, the effects of mode I matrix crack growth is isolated,l"The mo -ii mau6x .... ]J

i

crack growth law can be obtained from fatigue tests of the [45/-45]s laminate which isolates l

_tthe 45 degree..................plies in pure shear_i A -- -- - -;*-"procedu- _9]rek_9__ asbeen developed for determining the

ISV (damage parameters) from the test data obtained from these two laminates.

Co/7.t,l.r_-,_ _,_"r',_;'__ c.t) Tt!F

IS tJOr

Ft4fr. Of'<D t.'-

T/I_ FjJS_C

E.lfrlf.._ (L._

Experimental Procedures

The material chosen to experimentally verify the continuum damage model was

IM7/5260 graphite/bismaleimide laminates. This material system was fabricated with a
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toughened interlayer between the plies of the laminate. Cross-ply and quasi-isotropic

laminates were tested with the following stacking sequences: [0/902/0]s, [0/903]s, [0/45/-

45/90]s, and [901-4514510]s. The laminates were cut into 2.54 cm x 25.4 cm (l"xl0")

coupons, both unnotched and notched. The notched laminates had a 6.35 mm (1/4 inch)

hole drilled in the center.

Each laminate was subjected to tension-tension fatigue up to 100,000 cycles at a

frequency of 5 Hz and a stress ratio of 0.1. Prior to the fatigue tests, several unnotched

and notched specimens from each laminate were monotonically loaded to failure to measure

the ultimate strength and the open-hole residual strength of each laminate. This data

provided a baseline for assessing the effects of the fatigue loading history on residual

strength. For each cross-ply laminate, three replicate specimens were subjected to a

maximum tension fatigue stress of 30% of the ultimate failure strength of the laminate and

an additional three replicate specimens were tested at 60% of ultimate. For the quasi-

isotropic laminates, three replicate specimens were subjected to a maximum tension fatigue

stress of 50% of the ultimate failure strength of the laminate and an additional three were

tested at 60% of ultimate. In situ edge replicas and x-ray radiographs to characterize

damage were taken throughout the testing and the specimen did not have to be removed

from the load frame. The edge replicas and x-ray radiographs provided the means to

measure matrix crack and delamination surface areas. A Direct Current Displacement

Transducer (DCDT) with a 4" gage length was used to measure strain and remained

secured to the specimen throughout the test. The fatigue test was stopped periodically to

take edge replicas and x-rays, and to monotonically load the specimen to record the stress-

strain behavior. At the end of 100,000 fatigue cycles, the specimens were monotonically

loaded to failure to record the post-fatigue residual strength of each laminate.

The material damage parameters for the model were determined from the fatigue tests of

the unnotched [0/902/0]s laminate. The crack surface area as a function of fatigue cycles

was measured from the edge replicas and the x-ray radiographs [20]. From this data, the



matrixcrackinternalstatevariableswerecalculatedandusedto determinethe material

parameters. The parameters are then used in the matrix crack growth law to compute the

predicted damage evolution, stiffness loss, and residual strength for the other 3 laminate

stacking sequences. For those laminates exhibiting significant delaminations, the

delamination surface area and locations were determined from the x-ray radiographs and

edge replicas and used in an empirical relationship contained in the damage model.

/
/

Comparisons of Model Predictions to Experimental Results

,Stiffness Loss__

The material damage parameters determined experimentally t-or the mode I matrix

cracking growth law were used in a fatigue laminate stress program (FLAMSTR) [ 19] and

a damage dependent finite element code installed in the COMET [18] to predict reductions

in stiffness due matrix cracking. Predictions for the (0/903]s laminate are illustrated in

Figure 3. The predicted reductions in stiffness are in close agreement with the experimental

stiffness loss which is due solely to matrix cracking in the 90 degree plies. The distinct

trends for the two different constant amplitude maximum stress levels are accurately

predicted.

The [0/45/-45/90]s laminate exhibited edge delaminations primarily at the -45/90

interface. The experimentally measured delamination surface areas were used to predict

stiffness loss due to delaminations and the matrix crack growth law was used to analytically

predict the growth of matrix cracks in the various plies of the laminate. The experimental

results are compared to the model predictions for the two maximum fatigue stress levels in

Figures _. Once again, the model predictions are accurate. The stiffness loss in the quasi-

isotropic laminate was more significantly effected by the delaminations than by the intraply

matrix cracks.

ir* _,eC "Srt,:Ft:-
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The effects of different delamination growth patterns was illustrated by the different

behavior of the [901-4514510]s and [0145/-45190]s quasi-isotropic laminates. The x-ray

radiographs reveiled that the delaminations in the [90/-45/45/0]s laminate were localized

whereas the [0/45/-45/90]s laminate exhibited large prominent edge delaminations. The

stiffness loss of a [901-45145/0]s laminate is given in Figure 5. Again, the model correctly

predicted the stiffness behavior as a function of the fatigue loading history. (Close

attention should be paid to the differences between the effects of edge delaminations and

local delaminations [21].)

The analysis of the notched laminates yielded good results as well. Figure 6 shows the

damage state in the open-hole specimens for the two different stacking sequences. It would

be expected that the matrix crack in the 0-degree ply adjacent to the hole (axial split) would

have a significant effect in reducing the stress concentration at the notch. This would

increase the global displacements of the laminate prior to failure. The damage dependent

f'mite element code [ 18] implemented into the NASA COMET was used to calculate matrix

crack damage growth, laminate stresses and strains, and far field displacements. The finite

element mesh shown in Figure 7 is a quarter section of the notched laminate. The finite

element code predicts the damage state in each element as a function of the local element

stresses. An iterative procedure is used to calculate the element damage-dependent

properties and associated load redistribution throughout the finite element model. The

analytical far field displacements calculated over a 4" gage length are compared to the

experimental stiffness loss in Figure 8. This figure illustrates the ability of the code to

predict separate trends in stiffness reductions due to mode I matrix cracking for different

constant amplitude stress levels and layups for a spatially varying damage state. Edge and

local delaminations were included in the predictions and were found to have very little

effect, especially compared to the mode I matrix cracking of the axial split for the [0/903]s

laminate. The comparison of the results for the two laminates given in Figures 6 and 8

confirms the ability of this model to predict damage growth as a function of the laminate

8



stackingsequence.The[0/903]slaminatehasmoresevereaxialsplitting,i.e. moremodeI

matrixcracking,thusthepredictedlossin stiffnessdueto modeI matrixcrackingis larger.

Thereductionsin stiffnessaregreaterfor thislaminatebecausemoreloadis transferred

awayfrom thestressconcentrationatthehole.

Residual Strength

Residual strength predictions were also made for the two laminates and damage states

shown in Figure 6. A more refined I-mite element mesh is required for residual strength

predictions than for stiffness loss predictions. The mesh shown in Figure 9 was used to

predict the residual strength. The mesh near the hole was refined in order to try to capture

the local stress effects produced by the pronounced axial split in the 0-degree plies. The

comparison of the model predictions to the experimental results are shown in Figure 10.

The model uses a simple maximum strain failure criterion for the fibers as determined from

the ultimate tensile strength of the 0-degree unidirectional laminate. When the fiber

direction strain in the principal load-carrying ply reaches the fiber failure strain, the element:

will not sustain additional load, ie, the material is assumed to exhibit elastic-perfectly plastic

behavior. Progressive failure is then predicted by an iterative process to account for the

interelement load redistribution after an element has been determined to have fiber fracture.

The loads applied to the model boundaries am then incrementally increased until complete

failure occurs. The fiber failure criterion and the computational procedure are currently

under investigation. The authors believe the accuracy of the model will be greatly

improved by implementing a more sophisticated failure criterion.
J

Conclusions

The damage model developed by Allen and Harris was used successfully to predict the

stiffness degradation and residual strength of the IM7/5260 toughened matrix composite



material.Experimentalverification of the model was established by comparing the stiffness

loss of cross-ply and quasi-isotropic laminates with and without open holes for tension

fatigue loadings. Residual strength predictions were also reasonably close to the

experimental values. The model has predictive capability for intraply matrix cracks and

correlative capability for delaminations. The model successfully predicted both the effects

of laminate stacking sequence and loading history on damage growth and stiffness loss.

The ability of the model to predict damage growth in the open hole specimens was

particularly encouraging. These results suggest that the model is appropriate for spatially

varying damage developing in strain gradient fields and not confmed to uniform damage

that develops in the gage length of an unnotched uniaxial test specimen. The spatial

variation in damage is treated through the finite element discretization since the damage is

assumed to be uniform within an element. The empirical relationship for delamination

provided trends in stiffness loss that agreed with the experimental trends. It should be

noted, however, that the predictive capability of this model would increase dramatically if

delamination growth laws were available. Also, a more sophisticated fiber failure criterion

and computational procedure needs to be developed to improve the accuracy of the residual

strength predictions.
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i. INTRODUCTION

It has been found from micrographic and fractographic examinations of delam-

inations that a damage zone develops ahead of the delamination front in many

polymeric composites [1-3]. The presence of this damage zone in the interface in-

troduces nonlinearities to the interfacial response and thus affects the propagation

of the delamination in the interface. Lo et al. [4-6] previously modeled the re-

sponse of the damage zone by employing the interfacial constitutive relationships

developed by Needieman [71 and Tvergaard [81. While the aforementioned models

introduce nonlinear response to the mechanical behavior of the interface, these

models do not distinguish between the different mechanisms active in the damage

zone. The current paper will focus on the development of delaminations with a

damage zone containing micro cracks. This type of damage zone is usually found in

thermosetting matrix composites. An interface constitutive relationship adapted

from a micro-mechanical solution for a micro-cracked solid will be employed in the
analysis.

2. INTERFACE MODELING

In the current study, the response of the interface is assumed to behave isotrop-

ically when no micro-cracks are present. As the load is increased and the micro-

cracks accumulate, the mechanical properties of the interface are degraded in ac-
cordance with the orientation and distribution of the microcracks. This then causes

the mechanical response to behave orthotropically. For the case of non-interacting

cracks with an arbitrary crack orientation distribution, the effective moduli for

this type of material have been calculated by Ka_anov [9]. This method is based

on the superposition of the solution for the averaged crack surface displacement

of a single isolated crack subjected to remotely applied stresses. Since the mutual

positions of the cracks do not enter into the analysis under the non-interaction as-

sumption, the overall effect of the crack array is simply the sum of the contribution



from each isolated crack. If it is assumed that all the cracks in the representative

area are oriented in the same direction, the effective moduli are

E, = Eo (I)

Eo

E2 - 1 + 2_p (2)

v,2 --Vo (3)

vo

u2, - I + 2_rp (4)

Go
G,2 = (5)

1 + (27r_0) p

where Eo, Uo, and Go are the undamage Young's modulus, Poisson's ratio, and

shear modulus, respectively, p is the micro-crack damage variable and is defined
as

M
1 2

p: (6)
rrt_l

where the summation is performed over the M number of cracks found in the

representative area, A. l,_ is the length of the mth crack. Note that these effective

moduli are referenced to the physical crack axes. (The subscripts "1" and "2" de-

noting the axes parallel and perpendicular to the length of the crack, respectively.)

Base on experimental observations that the micro-cracks form perpendiculax to the

plane of principal stress, the micro-crack orientation can be determined from the

stress state in the interface.

The micro-crack damage variable as defined by Equation (6) requires the knowl-

edge of the number of cracks in the representative area and the individual crack

length. Since there could be many micro-cracks embedded in the resin rich inter-

face, simplifying assumptions are taken to maintain tractability of the problem.

Firstly, each micro-crack is assumed to grow instantaneously to a final crack length,

I, as dictated by an interracial thickness parameter, ti,,t, in the following manner

l= _tint (7)

where /3 is the micro-crack length scaling factor. Second, the accumulation of

micro-cracks is related to the highest principal stress experienced by the represen-
tative area as shown

= _Max (_p_..) (8)

where r/ is the number of micro-cracks in the representative area, ¢rp=.. is the

maximum principal stress at a given stress state, and X is the micro-crack



accumulation parameter. Finally, the failure of the interface is defined to occur
when

q_ + + u--2-_ > _c,/_ (9)
\ tlr_t l --

where u_ and uz are the normal and tangential components of the interfacial sep-

aration, respectively, and 6c,/t is a critical strain-like constant. The above descrip-

tion is similar to the phenomenological models previously proposed by Needleman

[7] and Tvergaard [8]. This interfacial constitutive model is incorporated into an

in-house two dimensional finite element code to facilitate the analysis [4-6]. The

damage zone is modeled in a manner similar to the Dugdale-Barenblatt cohesive

model [10,11]. In this code, the delamination propagates along the prescribed

inter-element boundaries on which the tractions are specified by the interracial

constitutive relationship. Due to the nonlinearity introduced by the micro-cracked

cohesive zone, incremental and iterative solution techniques are employed with the

finite element algorithm. Delamination propagation is evaluated at each load step.

3. COMPUTATIONAL RESULTS

This model was applied to the analysis of low velocity impact induced delam-

ination damage. The impact problem was modeled as a two dimensional three-

point bending problem where the impact induced displacement was simulated by a

monotonically increasing displacement applied at the mid-span under quasi-static

conditions. The stresses in the individual layers of the laxninate and the resin

rich interfaces were obtained from the finite element analysis. To focus on the

effects of the interface model, the mechanical properties of the individual layers

were everywhere constant and linear elastic. The accumulation of micro-damage in

the interface was evaluated at each displacement increment and the corresponding

changes in the interracial properties were updated for the next displacement incre-

ment. This procedure was repeated until the interface fails and the delamination
advances.

The three point bending configuration shown in Fig.1 was utilized for the anal-

ysis. This laminate has a [904/08], stacking sequence and possess the ply level

mechanical properties shown in Table 1. The interfacial parameters axe listed

in Table 2. Due to the low transverse strength of the lamina, a transverse ma-

trix crack will often appear in the mid-span of the bottom 90 ° layer upon the
application of the displacement. This transverse matrix crack then serves as

the initiation point for the delamination at the bottom interface. In the cur-

rent test case it was assumed to exist prior to any mid-span deflection. Fur-

thermore, the damage state was assumed to be symmetric about the mid-span,

thus only the right half of the span was modeled by the finite element analysis.

In figure 2, the model predicted delamination evolution is shown along with the
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Figure 1. Schematic of the 3-point bending test case.

Table 1. Ply Level Mechanical Properties

E_
Ey

G_

v_g

½z

17.4Msi (120.0GPa)

1.4 Msi (9.8 GPa)

1.4 Msi (9.8 GPa)

0.8 Msi (5.2 GPa)

0.5 Msi (3.5 GPa)
0.3

0.3

Table 2. Interfacial Model Parameters for 3-Point

Bending Test Case

Eo 1.4 Msi ( 9.65 GPa )

v_ 0.3

Go 0.5 Msi ( 3.45 GPa )

go-it 0.02 in. ( 0.51 rnm )
3, 100.0

t;,a 0.85x 10-4in. 0.22x 10-2 mm

fl 1.0
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experimental data obtained from displacement controlled three-point bend tests.

Damage initiation occurred at a lower mid-span displacement than those observed

experimentally. This was attributed to the prior existence of the matrix crack in

the finite element model. However, the model predictions were in good agreement

with the experimentally observed delamination evolution in the region of the inter-

face away from the matrix crack. To remedy the early delamination initiation, the

matrix crack can be modeled as an interface and allowed to evolve as the mid-span

displacement is applied.

4. CONCLUDING REMARKS

The formation of a damage zone containing micro-shear cracks and located

ahead of a delamination crack is accounted for in this analysis of delamination

evolution in polymeric laminated composites via a cohesive zone model. In the

development of the interfacial constitutive relationship, consideration is given to

the geometric characteristics of the micro-cracks. Since this interracial relationship
is based on a micro-mechanics solution that assumes the non-interaction of the

micro-cracks, further investigation is required to determine the range of responses

in which this assumption is valid.
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ABSTRACT

The development of delamination damage in a viscoelastic laminated composite is

examined in tiffs paper. Mechanical response at the ply level is obtained from mierome-

chanics in which the matrix is assumed to possess viscoelastic behavior. This model
accounts for the process zone that forms ahead of the delamination via nonlinear in-

terfacial constitutive responses. The transformation of this process zone into a pair of
delaminated surfaces is dictated by the interfadal opening displacement. Simulations

of delamination evolution in cross-plied laminates subjected to displacement controlled

three-point bending indicate a considerable amount of damage occurs while at constant
mid-span displacement.

INTRODUCTION

Laminated polymeric composites are susceptible to delamination damage when sub-

jected to low velocity impact loads. This type of damage can be very detrimental to the

structure as the mechanical properties can be greatly reduced. The delamination can

further serve as initiators of other damage modes and can cause the catastrophic failure

of the structure. In order to produce safe and efficient laminated composite structure,

the capability to predict the effect of the delamination damage on the component and

the subsequent response must be developed.

It has been observed that a process zone develops ahead of the delamination front.

The presence of this process zone in the interface introduces nonlinearities to the inter-

facial response. This in turn affects the propagation of the delamination in the interface

and thus the overall response of the laminate. It is therefore important to include the

effects of the process zone into the delamination damage analysis. Lo and Allen [1]

have accounted for the effects of the process zone in a manner similar to the Dugdale-
Barenblatt cohesive model [2, 3]. The interfacial tractions ahead of the delamination

foUowed the constitutive relationships developed by Needleman [4] and Tvergaard [5].



In these constitutive models the force normal to the interface behaves in a manner similar

to the interatomic forces generated during the interatomic separation. Recently, a mi-

cromechanics based interfacial model have been employed by Lo and Allen [6]. Ladeveze
approached this problem by modeling the interface explicitly in his finite element mesh.

The interracial constitutive equation employed internal damage variable to represent the
damage ahead of the delamination [7]. These studies assumed that the nonlinearities

reside solely in the constitutive response of the resin rich interface. In the present work,

the delamination damage analysis performed by Lo and Allen [1] is extended to account

for the viscoelastic responses in the surrounding plies. The motivation for including vis-
coelastic effects arises from the current interest in using polymer matrix composites in

propulsion systems and high speed aerospace transports.

PROBLEM STATEMENT

The problem of a crack propagating through a linear viscoelastic body can be posed as

an initial/boundary value problem by replacing the physical crack with a thin cohesive

strip. This, of course, necessitates the apriori specification of the crack path. Since,

it can be assumed for the current application that the crack propagates through the

resin rich ply interfaces, the placement of the cohesive strips is known. With this in

consideration, the initial/boundary value problem is expressed mathematically as,

aji,j = 0 (1)

_j_ = _,j (2)

_'J = 5 _ + a_, ] (_)

r__oo,"t Oekl ,o'1i : _ii_t--_r ar (4)

with the following boundary conditions:

_=_ on sl (s)

T,=_,inj=_, o_S_ (6)

¢, =_,(a) o_S3 (7)

and the following initial conditions (t < 0):

_,(=,t) =o (8)

o'ii(z, t) = 0 (9)

where equations (1) and (2) are, respectively, the conservation of linear and angular

momentum in which aij are components of the stress tensor. The current form of these

equations assumes that the body is in static equilibrium and is absent of body forces and

moments. Equation (3) is the strain-displacement relation where EO- are components

of the infinitesimal strain tensor and ui are the displacement components. Equation

(4) is the constitutive equation for a linear viscoelastic material. Ciit, t are components

of the relaxation modulus tensor. The tractions, T/, are prescribed along St and the



displacements, _, axe imposed over $2. The cohesive strip is represented by the surface

(or curve in two dimensions), Sa, where

= + + sf. (lO)

S + and S_ represent the upper and lower crack surfaces, respectively. Associated with

these surfaces are their respective crack surface normals, ns+3 and n s . In the undeformed
state, these surfaces occupy the same space, but as the body deforms, these surfaces

separate. The distance separating the formerly coincidental points on these surfaces is

the crack opening displacement, ft. Acting on this surface, Sa, is a traction, T, whose

magnitude is a function of the crack opening displacement, _. For time, t < 0, the body is

undeformed and is free from residual stresses as indicated by the initial conditions shown

in equations (8) and (9). The specific constitutive relationships for the viscoelastic body

and the interracial traction used in the current study are presented the the following
sections.

VISCOELASTIC CONSTITUTIVE RELATIONSHIP

The relaxation moduli, Cijkt, found in equation (4), represent the effective properties
of a continuous fiber reinforced polymer matrix lamina. These effective viscodastic

properties were calculated by gocher, et al. [8] using Hashin and Rosen's composite

cylinders assemblage model [9]. In Zocher's approach, the fibers were assumed to be
isotropic linear elastic and the matrix isotropie but linear viscoelastic. This enabled

the estimation of the nine viscoelastic properties for an orthotropic material with the

use of only a single constituent viscoelastic property, the matrix rdaxation modulus. In
this study, the matrix relaxation modulus is obtained from experimental data and is

fitted with a Wiechert model for the numerical calculations. The expressions for these

orthotropic viscodastic properties can be found in reference 8. Cipa are then calculated
from these nine orthotropic viscoelastic properties.

To facilitate the numerical solution of the initial/boundary value problem, the con-

stitutive equation shown in equation (4) was rewritten in incremental form [10]. If each
component of the relaxation tensor, Cqkh is fitted by a Wiechert model such that

M

Cij/d(Q ----Cijtt_ + E Ciikt e -,_t,. (II)

tn----I

where

7?ipa_,_ (no summation on i,j,k,l) (12)
pijkt = Cijkl

in which _ij;-l is the dashpot coefficient, Ciikt,_ is the spring constant and M is the
number of elements in the Wiechert model, then the incrementM form of the constitutive
equation is

where

C"j_:, -- Cijk, + -_ E TliJt'-- 1 - e "'J"--
rrt-_ l

Ae_t = dktAt

(14)

(is)



in which

Acr/_ = - -e

m=l

At

s,m.(t) = e S,m.. (t - a*). (l Z)

Equation (4) is now replaced with its incremental form shown in equation (11) in the
mathematical statement of the initial/boundary value problem. The derivation of equa-
tion (13) can be found in reference 10.

INTERFACE MODELING

The mechanical response of the resin rich interface is governed by the deformation

mechanism occurring at the molecular level. These mechanisms include uncoiling and

straightening of molecular chains, dislocation movement, reorientation of molecular chain

segments, void formation, and chain breakage [11]. Some of these mechanisms result in

the formation of micro-cracks and crazes ahead of the delamination [12-16]. Whether

one or more of these dissipative mechanisms are activated will depend on such factors

as molecular structure, loading rate, temperature, and processing history. Moreover, the

mechanical response of the resin in the interface region may be different from that of the

response measured in bulk resin specimens. The constraints imposed by the reinforcing

fibers, especially when the resin is sandwiched between two plies with different fiber

orientations, will alter the stress state in the resin rich region and thus suppressing some

deformation mechanisms while enabling other deformation mechanisms to occur.

In the current analysis, a phenomenological constitutive model proposed by Tver-

guard [5] is used to approximating the interracial response. This interface model as-

sumes that the normal traction exerted on the interface during purely normal separation

behaves similarly to the interatomic forces during interatomic separation.

The interface surface tractions for the two dimensional case are described by

27 _.
(18)

where

27 fit, 2), + ),2)- (19)

for 0 < ), < 1. Complete separation occurs when ), > 1. T is the interfacial traction

and fi is the interracial displacement as mentioned previously. The subscripts n and t

signify the normal and tangential components of the specific quantity, respectively, c,,_

is the maximum traction acting on the interface during a purely normal separation. 6

is the characteristic length and _ is the ratio of the interracial shear stiffness to the

normal stiffness. When the interface is undergoing a pure_normal separation, the normal
component of traction increases to a value of cr,_ at _-_ I then decreases to zero

at _-_6,,= 1 as shown in Figure 1. The associated work done by this traction going from

_-_=0to _-_= lis

9

W,,_ = ]_,,o._.. (21)



Needleman refers to this as the work of separation. Thus, a larger am_= or _ will result
in a greater amount of energy required to fail an interface. These two parameters also

control the initial stiffness of the interface as shown by the expression for the initial

stiffness in the mode I opening case,

07". J _ 2_o,..z
(22)

Ou. J_,_,,,,=o 7 _,_

If the initial stiffness and the work of separation can be determined analytically or

experimentally, then the model parameters, a,_.= and/_ can be calculated from equations

(14) and (IS). Although this data is not readily available, equations (14) and (15) are

used to check whether the selected ar.._ and/5 produce values for the work of separation

and initial stiffness that are reasonable from the physical and computational stand point.

An often encountered problem is the selection of cr,,_ and 5 combinations that produce

high initial stiffnesses as to result in computational difficulties.

NUMERICAL SOLUTION PROCEDURE

The constitutive models are incorporated into an in-house finite element code to fa-

cilitate the analysis. In this code, the delamination propagates along the prescribed

inter-element boundaries on which the tractions are specified by the interracial consti-

tutive relationship. Due to the nonlinearities introduced by the micro-cracked process

zone and the viscoelastic response, the problem is solved incrementally with the virtual

work equation expressed in the following form [17]:

fv Ci_klAektSAeijdV "_ fs T[+ZXTSAuidS- f °'i_SAeijdV
Jv

(23)

where C_i_l is the material tangent modulus tensor calculated from equation (13) and
Am is the displacement increment vector. Also, the domain of interest has interior V

and boundary S. The superscripts r and r + Ar denote quantities at time _- (which are

assumed to be known) and quantities at time r + At, respectively. The approximate

nature of Equation (23) is due to the deletion of the higher order terms in Au_ during
the incrementalization process. To account for this approximation, a Newton-Raphson

iteration scheme is employed for each increment of boundary tractions. The displacement
increment is thus successively updated as follows for the jth iteration:

{zx,,b = (a,,}j_, + {aa,_b (24)

where {AAu}j is obtained by solving the following on the jth iteration:

[K]_'{AAu}j = IF T+a_} _ {R_+a_}i_l (25)

where [K] is the global stiffness matrix, {F} is the global force matrix, and {R} is the
global reaction matrix.

Equations (14) and (15) are solved recursively until the following convergence criterion
is satisfied:

II a,_ Ili -II a,_ Ili-, <__r,_ (26)

IIa. IIj

where rtot is a user specified convergence tolerance and the quantities bracketed by the
double vertical bars are the Euclidean norms.



ANALYSIS OF DELAMINATION DAMAGE

To gain a better understanding on how viscoelasticbehavior affected the low velocity

impact induced damage process, the computational simulation was set up to mimic

conditions encountered by the laminate during the low velocity impact event. The three

point bending problem, shown in Figure 2, was considered in the analysis ofdclamination

evolution in a laminated composite. This laminate had a [06/903],stacking sequence and

possessed the fiber and matrix properties shown in Table I. Listed in Table 2 axe the

interfacialparameters for Tvergaard's model. The viscoelasticresults presented in this

section corresponded to the mid-span displacement history shown in Figure 3. During

the ramp up portion, the mid-span was displaced at 0.001 inches per second for the first

100 seconds to produce a maximum mid-span dksp|accment of 0.1 inches. Following this
ramp up, the mid-span displacement was held at 0.1 inches untU the simulation ended

at t--10000 seconds. For comparative purposes, the dclamination evolution responses

wcrc also generated for the same laminate but with linear elastic behavior at the ply
level. The mid-span displacement in these cases was increased at a rate of 0.001 inches

per second until a displacement of 0.1 inches was achieved. This was identical to the

ramp-up portion of the mid-span displacement history used in the viscoelasticcase. In

the finiteelement mesh, a transverse matrix crack was positioned at the mid-span of the

bottom 90 ° layer to serve as the initiationpoint at the bottom 0/90 interface. Since the

damage state was assumed to bc symmetric about the mid-span, only the right half of

the span was modeled in the analysis. Finally,a state of plane strain was assumed in the

calculations with the predicted interfaceopening displacements used in the determination

of delamination propagation.

Shown in Figure 4 is the predicted delamination evolution in the bottom interface of

the viscoelastic laminate. In this case, where the interfadal shear stiffnessto normal

stiffnessratio, a, was 0.15, no delamination damage was predicted in the upper 0/90

interface. Furthermore, the results indicated that the majority of the dclandnation evo-

lution occurred after the maximum displacement has bccn reached. Two third of the

finaldelamination length was attributed to propagation during the constant mid-span

displacement period. The small amount of damage development during the ramp-up

displacement was in contrast to the linear elastic results shown in Figure 5. At the

point when the maximum displacement was re.ached (t=100 see.),the delamination in

the elasticlaminate was twice the length of the delamination predicted in the viscoelastic

laminate. However, the dclamination for the viscoelasticcase grew during the constant

mid-span displacement period and eventually exceeded the length predicted for the elas-

tic case. When the intcrfacialshear stiffnessto normal stiffnessratio, a, was reduced

to 0.125, a comparable amount of delamination damage was predicted in the bottom
interface at t=100 seconds for both the viscoelasticand elasticcases. This is illustrated

in Figures 6 and 7, respectively. Once again no damage was predicted in the upper

interface. Subsequent delamination growth during the constant mid-span displacement

period in the viscoelasticlaminate resulted in the finaldelamination length being almost
twice that of the elasticcase.

DISCUSSION

The results presented above illustrates the effects that stress redistribution can have

on the damage evolution. For the viscoelastic cases, the mechanism for stress redistribu-

tion is due primarily to the relaxation of the viscoelastic matrix and the accumulation

of damage. It is possible, for the example shown in Figure 4, that the stress relieve due

to relaxation near the delamination front operating in conjunction with the nonhnear

response of the interface hindered the advancement of the delamination during the dis-

placement ramp-up period. On the structural scale, the shift of load due to relaxation



from the matrix dominated plies to the fiber dominated ones may have assisted damage

evolution during the constant mid-span displacement time period. From the prelimi-

nary results presented here, it appears that under certain circumstances, the viscoelastic
effects cannot be neglected in the analysis. This is exemplified by the case where the

interracial shear stiffness to normal stiffness ratio was equal to 0.15. In this case, the

delamination predicted by assuming ply level viscoelastic response was initially less than

the elastic results, but with time, the delamination in the viscoelastic laminate actually

exceeded the elastic prediction.

In the performance of this analysis, several assumptions were taken concerning the

constitutive response of the lamina and the resin rich interface. One assumption is the

elastic response of the reinforcing fibers. While this may be a reasonable assumption

in the axial direction of the fiber, there could be a noticeable amount of viscoelastic

response in the radial direction [18]. The absence of time dependence in the interfacial
constitutive model is another area that warrants further examination. These are some

of the issues that will be addressed in the continue development of this model.
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Table1. Lamina Elastic and Viscoelastic Constituent Properties

Fiber:

E l 0.40 x 108psi I

v! 0.3 )v1 0.6

Matrix (Elastic): ]

E,,_ 0.14 x 107psi

v,_ 0.3

V,_ 0.4

Matrix (Viscoelastic):

Parameters for I 1 element Wieehert model

Eoo 11 0.48 x lOSpsi

i

1

2

3

4

5

6

7

8

9

10

11

Em_, psi

0.44 x 104

0.90 x 104

0.19 x 10 s

0.39 x l0 s

0.78 x l0 s

0.14 x 10 6

0.20 x 10 6

0.22 x 106

0.18 x 10 6

0.11 × 10 6

0.81 × 10 s

#e.c

0.87 x 102

0.18 x 104

0.38 x lO s

0.78 x 106

0.16 x lO s

0.28 X 10 9

0.41 x 101°

0.44 x 1011

0.37 x 1012

0.21 x 1013

0.16 x 1014

Table 2. Interfacial Model Parameters Used in Test Cases.

¢r,_= 0.50 x 103 psi

6n, /St 0.15 x 10 -4 in.

(case A) 0.150

a (case B) 0.125
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Figure 1. The response of the normal interfacial traction force to the normal separation

of the interface as model by Tvergaaxd [5].
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Figure 2. Schematic showing the geometry of the three point loaded [06/903], laminate
used in the analysis.
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C

C

C Delamination Analysis with Nonlinear COhesive Model

C (DANCOM)
C

C MODIFIED TO INCLUDE DISPLACEMENT BOUNDARY CONDITIONS
C

C ALSO MODIFIED TO PLANE STRAIN CONDITIONS
C

C Routine to store force-displacement data added on March 9, 1994
C by David Lo

C

C Modified for non-zero displacement boundary conditions by
C David Lo on April 18,1994
C

C Add modified Kachanov's mode] to interface constitutive module
C by David Lo on June 9, 1994
C

REAL*8 FGL(2400),DS(1500,4),DE(1500,3),

1 Q(2400),DST(ISOO,4).DET(1500,3),KG(2400,600),

2 FG(2400),FORCE(2400),DN(500),DT(500)

COMMON/ELAS1/S(1500,4),E(1500.3),EO(1500,3),DSTRAN(3).
1 DSTRES(4)

COMMON/PLASI/ALPHA(4,1500),EPBAR(1500),SIGBAR(1500),

1 IPLAS(15OO),EPSP(15OO,4),DEPSPT(1500,4),
2 DEPSP(1500,4)

INTEGER NODE(1500,3).NDOF(1500)

COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

I IEQUIT,ITEMAX,ITEMP,IINT

COMMON/AREA2/NODE,NDOF

COMMON/AREA4/Q

COMMON/AREAT/NSTE,INCR,ITER

COMMON/AREAIO/DST,DET

COMMON/LOAD/TIMV(I,IOOO),RV(I,IOOO),INODE(IOO),ICURVE(IO0),

1 DINC(IOOO),DPMINC(IOOO),DMULT(1.1000)
COMMON/BANDED/MAXBW

COMMON/HOMOG/SIGIAV,DEBAR11

CX COMMON/INTFAC/NINTI,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP,ITGPL(IO,2),ITCON(500,2),

I SIGMAX(IO),DELTAN(IO),DELTAT(IO),ALPH(IO),

2 ETA(IO),DBFAC(IO),DN,DT,INTDF(5OO),INTSP(500),
3 RMU(IO),DISPN(5OO),DISPT(5OO).TNRATIO(500),

4 XRHO (500), S IGNN(500), TAUNT (5(X)), FN(500), FT (500)

COMMON/MODPARA/RMPI(IO),RMP2(IO),RMP3(IO),R_P4(IO).RMP5(IO),

1 RMP6(IO),RMP7(IO),RMP8(IO).RMP9(IO),RMPIO(IO)
COMMON/VPLAS1/DTIME,DEVPAL

COMMON/DISPHIS/DELTAQ(2400),WORKN(500),WORKT(5(X)),FSEPN(500),
1 FSEPT(500)

COMMDN/IPRISIG/ISELSIG,NUMSELSIG,MSELSIG(IO0)
C INPUT DATA AND PRINT

DTIME=I.0

CALL INPUT(FGL,NSTE)

CALL BANWD(2,NEL,NODE,2,MAXBW,I)

AND INTERFACE TRACTIONS

C INITIALIZE DISPLACEMENTS

NTOT=2*NN

DO 100 I=I,NTOT

_00 Q(I)=O.

C INITIALIZE STRESS, STRAIN,

DO 44 I:I,NEL

S(I,4):O.

EPSP(I.4)=O.

DO 44 J=l,3
S(I,J)=O.

E(I,J)=O.

EO(I,J)=O.O

EPSP(I,d)=O.

44 CONTINUE

DO 5500 I = i, 500

XRHO(I) = 0.0

WORKN(I) = 0.0

WORKT(1) : 0.0

FSEPN(I) = 0.0

FSEPT(I) = 0.0

FN(I) = 0.0

FT(I) = 0.0

5500 CONTINUE

C SET GLOBAL FORCE MATRIX EQUAL TO A TEMPORARY VALUE USED TO



C EVALUATETHEINCREMENTALLOADS.........
DO50 I:I,NTOT

50 FORCE(I):FGL(I)
IF(IDUMP.NE.I)GOTO85
WRITE(6,4400)

4400FORMAT(/,IOX,'STEPNO.',5X,'TIME',5X,
I'SlGllAV',5X,'EPSllAV',//)

85 CONTINUE

C THIS LOOP INCREMENTS THE LOAD
TIME:O.

EBARIi:O.

DO 9999 INCR:I,NSTE

EBARII:EBARI1+DEBAR11

TIME:TIME+DTIME

C DETERMINE GLOBAL LINEAR STIFFNESS MATRIX

DO 39 I=I,NEL

DST(I,4)=O.

DS(I,4):O.

DEPSPT(I,4):O.

DEPSP(I,4):O.

DO 39 K=1,3
DST(I,K)=O.

DS(I,K):O.

DEPSPT(I,K):O.

DEPSP(I,K)=O.

39 DET(I,K):O.

CALL KGLOB(KG,NODE,NTOT,NDOF)
ITER:I

C PERFORM NEWTON-RAPHSON ITERATION ON EACH LOAD INCREMENT IF

C SOLUTION IS NONLINEAR

C INCREMENT THE LOADS HERE

IF(NF.EQ.O) GO TO 240

DO 239 I=I,NF

K=ICURVE(I)

L=INCR

NNI=2*INODE(I)-I

NN2=NNI+I

FGL(NNI)=FORCE(NNI)*RV(K,L)

FGL(NN2)=FORCE(NN2)*RV(K,L)

239 CONTINUE

240 CONTINUE

CX

IF ( NDBC .EQ. 0 ) GO TO 243

DO 242 I = 1, NDBC
CX

CX K = ICURVE(I)
CX

K=I

L = INCR

OPMINC(I) = DINC(I) * DMULT(K,L)

CX WRITE(6,1234) L,I,DPMINC(1)

CX 1234 FORMAT(/,'INCR = ',IB,BX,'NUMDBC = ',I5,5X,'DPMINC(I) =',
F14.B,/)CX

242

243
CX

9(300

9010

÷

CONTINUE

CONTINUE

CONTINUE

DO 9010 J=I,NTOT
FG(d)=O.O

CONTINUE

IF(IDUMP.LT.2) GO TO 3004
CX

WRITE(G,3010) INCR

3010 FORMAT(//,IOX,'LOAD INCREMENT NUMBER ',I6,//)
CX

WRITE(6,3002) ITER

3(302 FORMAT(2BX,'ITERATION NUMBER',I6,//)

3004 CONTINUE

C DETERMINE GLOBAL FORCE MATRIX

CALL FGLOB(FGL,FG,NTOT,S)

C DETERMINE GLOBAL STIFFNESS MATRIX IF UPDATING

IFLAG=I

IF(ITER.EQ.I) GO TO 99

ISQUIG=(ITER-I)/ISREF*ISREF

IF(ISQUIG.NE.ITER-I) GO TO 98

CALL KGLOB(KG,NODE,NTOT,NOOF)

98 CONTINUE

IF(ITER.LT.ITEMAX) GO TO 99

WRITE(G,3003)

3003 FORMAT(' ',3X,'SOLUTION HAS NOT CONVERGED',/)



STOP

C SOLVE FOR DISPLACEMENT INCREMENTS USING GAUSS ELIMINATION

99 CONTINUE

CALL BANSOL(KG,FG,NTOT,MAXBW,2400,600,3)

DO 87 I=I,NTOT

87 DELTAQ(I)=FG(I)

C CHECK DISPLACEMENT INCREMENTS FOR CONVERGENCE

VOLD=O.

VNEW=O.

DO 88 I=I,NTOT

VOLD=VOLD+DELTAQ(I)**2

Q(1)=Q(I)+DELTAQ(I)

88 VNEW=VNEW+Q(I)**2

VOLD=(VOLD)**0.5

VNEW=(VNEW)'*O.5

C CALCULATE STRESSES AND STRAINS

CALL STRESS(NODE,DS,DE,DELTAQ)

FRAC=VOLD/VNEW

IF(FRAC.LT.O.) FRAC=-FRAC

IF(FRAC.LT.RTOL) GO TO 887

ITER=ITER+I

IF(IDUMP.LT.2) GO TO 777

WRITE(G,600i)

6001 FORMAT(/,IOX,'THE ESTIMATED DISPLACEMENTS ARE',/,SX,

I'NODE NO.',I3X,'AI',i3X,'A2',/)

DO 739 I=i,NN

I2M1=2"I-1

I2=2"I

739 WRITE(6,1004) I,Q(I2M1),Q(I2)
ISIGP=I

CX IF(ISIGP.NE.i) GO TO 777

CX WRITE(6,?40)

CX ?40 FORMAT(' ',3X,'THE ESTIMATED STRESSES ARE',//,

CX 12X,'ELEMENT NO.',GX,'SIG-XX',6X,'SIG-YY',

CX 26X,'SIG-XY',6X,'SIG-ZZ',//)

CX DO 7411:I,NEL

CX WRITE(6,?42) I,S(I,I),S(I,2),S(I,3),S(I,4)

CX

CX

742 FORMAT(' ',8X,I3,4(lX,EI4.?),/)
741 CONTINUE

777 CONTINUE

GO TO 9000
887 CONTINUE

CY

CY DO 772 I=I,NIFEM
CY WRITE(B,771) INCR,I, XRHO(I)

CY 771 FORMAT(SX,'INCR= ',IS,SX,'INTF.

CY 772 CONTINUE

CY

CY

CX

C STORE DATA FOR FORCE-DISPLACEMENT PLOT

C STRESSES FROM SELECTED ELEMENTS ARE RECORDED

C FOR LATER CONVERSION TO TRACTION FORCES
CX

IF ( ISELSIG .EQ. 0 ) GO TO 888

CX

IF ( INCR .EQ. I ) THEN

WRITE(8,80C())

8000 FORMAT(/,SX,'LOAD STEP'

1 lOX,'SZZ',/)
ENDIF

SSUMI = 0.0

SSUM2 = 0.0

SSUM3 = 0.0
SSUM4 : 0.0

DO 8005 Id : I, NUMSELSIG

IENUM = MSELSIG(IJ)

ELEM. NUM.: ',IS,SX,'XRHO=

CY

CY

CY 8001

8005

8011

CX

888 CONTINUE

CX

',E14.7)

,2X,'ELEM',TX,'SXX',IOX,'SYY',IOX,'SXY',

SSUMI : SSUM1 + S(IENUM, 1)
SSUM2 = SSUM2 + S(IENUM,2)

SSUM3 = SSUM3 + S(IENUM,3)

SSUM4 = SSUM4 + S(IENUM,4)

WRITE(8,8001) INCR, IENUM, S(IENUM, I), S(IENUM,2), S(IENUM,3),

S(IENUM,4)

FORMAT(SX,IS,SX,IS,SX,4(2X,Ei2.5))

CONTINUE

WRITE(8,8011) INCR, SSUMI, SSUM2, SSUM3, SSUM4

FORMAT(10X,I5,10X,4(2X,E12.5))



C×XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

537

54O

CX

C

C

c

c

CX

C

C

CX

CX

CX
CX

CX

CX

CX
CX

CX

CX

CX
CX

CX 531

CX

CX

CX
CX

CX

CX

CX
CX

CX

CX 532

Routine to store damaged interface data

open and initialize data file "tntf.out"

IF ( INCR .EO. I ) THEN

OPEN (7,FILE='kintf.out',STATUS='UNKNOWN')

WRITE(7,537) INCR

FORMAT(/,5X,'INCREMENT NUMBER ',I5,/)

DO 540 I = I, NIFGP

DO 540 d = ITGPL(I,I), ITGPL(I,2)

IA = 0

IB = 0

LN = 0

SPN = 0.0

SPT = 0.0

TNRAT = 0.0

WRITE(7,535) I, J, LN, IA, IB, SPN, SPT, TNRAT

CONTINUE

REWIND 7

ELSE

REWIND 7

ENDIF

check fop failure and assign damage flags and load step

INTDF(1) : I, tensile failure

INTDF(I) : 2, shear failure

WRITE(7,537) INCR

DO 530 d = I, NIFGP

ASSIGN VARIABLES FOR KACHANOV'S MODEL

EO = SIGMAX(J)

RNU = DELTAN(j)

GO = DELTAT(J)

ESPCRIT = ALPH(J)

RLAMBDA = ETA(j)

RL = DBFAC(J)

RBETA = RMU(J)

CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS

EO = EO / ( 1.0 - (RNU**2))

RNU = RNU / ( 1.0 - RNU )

LN = 0

DO 530 I = ITGPL(d,1), ITGPL(J,2)

LN = LN + I

DISPN = 0.0

DISPT = 0.0

TNRATIO = 0.0

IF (DN(I)/DELTAN(d) .LE. I ) GO TO 53i

IF (INTDF(I) .EQ. 0 ) THEN

INTDF(I) = I

INTSP(I) = INCR

DISPN = DN(I)

DISPT = DT(I)

TNRATIO = OT(I) / DN(1)

ENDIF

CONTINUE

IF (ALPH(J) .LT. 0.001 ) GO TO 532

IF (DABS(DT(I))/DELTAT(J) .LE. I ) GO TO 532

IF (INTDF(I) .EO. 0 ) THEN

INTDF(I) = 2

INTSP(1) = INCR

DISPN = DN(I)

DISPT = DT(I)

TNRATIO = DT(I) / ON(1)

ENDIF

CONTINUE

RLSO = ((DN(I)/RL) / 2.0 )**2 + ((OT(I)/RL) /2.0 )*'2
RLAM = SORT( RLSO )

UMI = (DN(1)/RL) / 2.0 + RLAM

UM2 = (DN(I)/RL) / 2.0 - RLAM

UMAX : DMAXI( UMI , UM2 )

IF ( UMAX .GT. ESPCRIT ) THEN

IF (INTDF(1) .NE. 3 ) THEN

INTDF(I) = 3

INTSP(I) = INCR



DISPN(I)= DN(I)
DISPT(1)= DT(1)
TNRATIO(I): DT(1)/ ON(I)

TNRATIO(I) = ABS(TNRATIO(1) )
ENDIF

ENDIF

STORE DATA: GROUP NUM., ELEMENT NUM., DAMAGE FLAG, FAILURE STEP

1

535

WRITE(?,535) d, I, LN, INTOF(I),

DISPN(I), DISPT(I),

FORMAT(5(2X,I5),3(2X,E14.7))

INTSP(I),

TNRATIO(1)

530 CONTINUE

CX

CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CX

CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX×XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX×XXXXXXXXXXXXX
CX

C Routine to store work of separation data
C

c open and initialize data file "kwork.out"

c

IF ( INCR .EQ. I ) THEN

OPEN (9,FILE='kwork.out',STATUS='UNKNOWN')

WRITE(9,9537) INCR

9537 FORMAT(/,SX,'INCREMENT NUMBER ',I5,/)

DO 9540 I = i, NIFGP

DO 9540 d = ITGPL(I,I), ITGPL(I,2)

IA : 0

IB : 0

WOSN = 0.0

WOST = 0.0

WOSTOT : 0.0

WRITE(9,9535) I, d, WOSN, WOST, WOSTOT
9540

CX

1

9535

C

9530 CONTINUE
CX

CONTINUE

REWIND 9

ELSE

REWIND 9

ENDIF

WRITE(9,9537) INCR

DO 9530 d = I, NIFGP

DO 9530 I = ITGPL(J,I), ITGPL(d,2)

STORE DATA: GROUP NUM., ELEMENT NUM., WORK OF SEPARATION

WOSTOT = WORKN(I) + WORKT(I)

WRITE(9,9535) d, I, WORKN(I), WORKT(I),

WOSTOT

FORMAT(2(2X,I5),3(2X,E14.7))

CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CX

CX IF(IDUMP.EQ.i) GO TO 84

IF(INCR/IPRI*IPRI.NE.INCR) GO TO 9999

WRITE(G,3001) INCR,ITER

3001 FORMAT(//,5X,'EQUILIBRIUM FOR LOAD STEP NUMBER ',I6,

I' OBTAINED AFTER ',IG,' ITERATIONS',//)
CX

CX temporarily disabled
CX

CX WRITE(6,1032) SIGIAV,EBARII

CX 1032 FORMAT(//,IOX,'SIGIAV=',E14.7,1X,'EBARII = ',E14.7,/)
WRITE(G,1003)

1003 FORMAT(/,IOX,'THE DISPLACEMENTS ARE',/,SX,'NODE NO.',I3X,

1'A1',I3X,'A2',/)

DO 93 I=I,NN
93 WRITE(G,IO04) I,Q(2*I-I),Q(2*I)

1004 FORMAT(lOX,I3,2(1X,E14.7))

CX WRITE(G,IOI1)

CX 1011FORMAT(//,2X,'ELE. NO.',3X,'SIGMAll',3X,'EPSILONll',3X,

CX 1'SIGMA22",3X,'EPSILON22',3X,'SIGMA12,,3X,,EPSILON12,,3X,
CX 2'SIGMA33',//)
CX DO 1012 I=I,NEL

CX WRITE(G,IO13)I,S(I,I),E(I,I),S(I,2),E(I,2),S(I,3),E(I,3),
CX 1S(I,4)



CX

CX

CX 4013

CX 4012

CX 1041
CX

CX

CX 1012 CONTINUE

CX 1013 FORMAT(' ',SX,I3,7(E14.7,1X))
CX IF(IDUMP.NE.O) GO TO 1041

CX WRITE(G,4011)

CX 4011 FORMAT(//,2X,'ELEMENT NO.',3X, IOX,'EPSPll'

CX 110X,'EPSP22",lOX,'EPSPI2",IOX,'EPSP33,,//)'
DO 4012 I=I,NEL

WRITE(G,4013)I,EPSP(I,I),EPSP(I,2),EPSP(I,3),EPSP(I,4)

FORMAT(' ',6X,I3,7X,4(EI3.6,2X))
CONTINUE

CONTINUE

end here

IF(IINToEQ.O) GO TO 9999
CX

CX WRITE(6,4500)

CX 4500 FORMAT(/,IOX,' THE INTERFACE DISPLACEMENTS ARE',/,

CX 15X,'NORMAL COMP.',5X,'TANGENTIAL COMP.',/)
CX NUM=NINT2-NINTI+I

CX O0 229 I=I,NUM

CX WRITE(6,4501) DN(I),DT(1)

CX 4501 FORMAT(5X,EI5.7,1X,EI5.?)

CX 229 CONTINUE

CX LLL=NINTI

CX DO 230 I=I,NUM
CX IF(DN(I)/DELTA.LE.1.) GO TO 231

CX WRITE(G,4502) INCR,LLL

CX 4502 FORMAT(/,5X,'STEP NO. ',I5,1X,

CX 1'NODE NO.',I3,' DEBONDED IN TENSION',/)
CX 231 CONTINUE

CX IF(ALPH.LT..O01) GO TO 232
CX IF(DABS(DT(I))/DELTA.LE.1) GO TO 232

CX WRITE(6,4503) LLL,INCR

CX 4503 FORMAT(/,SX,'STEP NO. ',I5,1X,

CX 1'NODE NO.',I3,' DEBONDED IN SHEAR',/)
CX 232 CONTINUE
CX LLL=LLL+I

CX 230 CONTINUE

CX

DO

50O0

5050

1

2

5100
229

4502

1
231

4503
1

232

230

CX

84

4404

9999

229 d = 1, NIFGP

WRITE(6,5000) d

FORMAT(//,' INTERFACE ELEMENT GROUP NO. ",I5,//)
WRITE(6,5050)

FORMAT(IOX,' THE INTERFACE DISPLACEMENTS ARE:',/,

5X,'INTRF. ELEM. NO.',SX,'NORMAL COMP.',5X,
'TANGENTIAL COMP.',/)

DO 229 I = ITGPL(J,1), ITGPL(J,2)

WRITE(6,5100) I, DN(I), DT(I)

FORMAT(15X,IS,10X,EIS.4,5X,E15.4)
CONTINUE

DO 230 d = 1, NIFGP

WRITE(6,50OO) d

DO 230 I = ITGPL(J,1), ITGPL(J,2)
IF (DN(I)/DELTAN(J) .LE. 1 ) GO TO 231

WRITE(6,4502) INCR, I

FORMAT(/,5X,'STEP NO. ',I5, iX,

'NODE NO.',I6,' DEBONDED IN TENSION',/)
CONTINUE

IF (ALPH(d) .LT. 0.001 ) GO TO 232

IF (DABS(DT(I))/DELTAT(J) .LE. I ) GO TO 232

WRITE(6,4503) INCR, I

FORMAT(/,5X,'STEP NO. ',I6,1X,

'NODE NO.',I6,' DEBONDED IN SHEAR',/)
CONTINUE

CONTINUE

GO TO 9999

CONTINUE

WRITE(S,4404) INCR,TIME,SIGIAV,EBAR11

FORMAT(10X,I5,F10.7,1X,E14.7,1X,EI4.?)
CONTINUE

CLOSE(5)

CLOSE(G)

CLOSE(f)

CLOSE(8)

CLOSE(9)
CLOSE(19)

STOP
END



C
C SUBROUTINE INPUT

C

C THIS SUBROUTINE READS IN AND PRINTS INPUT DATA
C

C

SUBROUTINE INPUT(FGL,NSTE)

IMPLICIT REAL*B(A-H,O-Z)

REAL*8 A1(1200),A2(1200),FGL(2400),T(1500),DN(500),DT(500)

INTEGER NOOE(1500,3),NDOF(1500),MATSET(1500),MTYPE(1500)
CHARACTER*75 TITLE, INFILE, OUTFILE

COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

1 IEQUIT,ITEMAX,ITEMP,IINT

COMMON/ELAS1/S(1500,4),E(1500,3),EO(1500,3),DSTRAN(3),
1 DSTRES(4)

CDMMON/ELAS2/EMI(4).EM2(4),VNU(4).G12(4),YI(4),Y2(4),Y(4),
1 EM(4)

COMMON/PLAS1/ALPHA(4,1500),EPBAR(1500),SIGBAR(1500),

1 IPLAS(1500),EPSP(1500,4),DEPSPT(1500,4),
2 DEPSP(1500,4)

COMMON/PLAS2/SX(IO,4),EX(IO,4),EPX(IO,4),

1 SP(IO,4),DEPSAL,BETA
COMMON/VPLAS1/OTIME,DEVPAL

COMMON/VPLAS2/RN,H1,H2,AA1,AA2,C2,OO,B1,TEMP,TMELT,QS
COMMON/AREA2/NODE,NDOF

COMMON/AREA5/T,MATSET,MTYPE

COMMON/AREA6/A1,A2

COMMON/BB/NUNIAX(4),IDUMP2,ISUB

COMMON/LOAD/TIMV(1,1OOO),RV(1,1OOO),INODE(IOO),ICURVE(IO0),

1 DINC(IOOO),DPMINC(IOOO),DMULT(1,1000)

CX COMMON/INTFAC/NINT1,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP,ITGPL(IO,2),ITCON(500,2),

1 SIGMAX(IO),DELTAN(IO),DELTAT(IO),ALPH(IO),
2 ETA(IO),DBFAC(IO),DN,DT,INTDF(5OO),INTSP(500)

3 ,RMU(IO),DISPN(5OO),DISPT(5OO),TNRATIO(500),

4 XRHO(5OO),SIGNN(5OO),TAUNT(5OO),FN(5OO),FT(500)

COMMON/MODPARA/RMPI(IO),RMP2(IO),RMP3(IO),RMP4(IO),RMP5(IO),

1 RMP6(IO),RMPT(IO),RMP8(IO),RMPg(IO),RMPIO(IO)
COMMON/HOMOG/SIGIAV,DEBAR11

COMMON/IPRISIG/ISELSIG,NUMSELSIG,MSELSIG(IO0)
C

C READ INPUT DATA

C NN - NUMBER OF NODES

C NEL - NUMBER OF ELEMENTS

C NF - NUMBER OF NODES WITH EXTERNALLY APPLIED LOADS

C NDBC - NUMBER OF DISPLACEMENT BOUNDARY CONDITIONS
C DINC - DISPLACEMENT INCREMENTS

C IDUMP - DUMPING CODE (1 TO DUMP)

C ITEMP - TEMPERATURE EFFECTS FLAG (1 FOR TEMPERATURE EFFECTS)
C RTOL - TOLERANCE USED TO MEASURE EQUILIBRIUM CONVERGENCE

C IPRI - OUTPUT PRINTING INTERVAL

C ISREF - NUMBER OF ITERATIONS BETWEEN REFORMATION OF STIFFNESS
C MATRIX

C IEQUIT - NUMBER OF STEPS BETWEEN EQUILIBRIUM ITERATIONS (NOT USED)

C ITEMAX - MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS PERMITTED

C BEFORE REFORMATION OF STIFFNESS MATRIX

C IINT- EQ. ZERO UNLESS USING INTERFACE ELEMENTS

C AI GLOBAL AI COORDINATE OF ITH NODE

C A2 - GLOBAL A2 COORDINATE OF ITH NODE

C IEL - ELEMENT NUMBER ASSOCIATED WITH CONNECTIVITY MATRIX

C NODE - NODAL CONNECTIVITY PARAMETER - GIVES GLOBAL NODE NO'S OF

C ITH ELEMENT

C MATSET - MATERIAL NUMBER FOR ITH ELEMENT

C MTYPE - MATERIAL MODEL FOR ITH ELEMENT
C 1 = ISOTROPIC LINEAR ELASTIC

C 2 = ELASTIC PLASTIC

C 3 = VISCOPLASTIC
C 4 = VISCOELASTIC

C T - THICKNESS OF ITH ELEMENT

C NDOF - DEGREE OF FREEDOM OF ITH BOUNDARY CONDITION
C INODE - NODE OF ITH FORCE VECTOR

C FAI - EXTERNAL LOAD IN A1 DIRECTION APPLIED TO ITH NODE

C FA2 - EXTERNAL LOAD IN A2 DIRECTION APPLIED TO ITH NODE

C NUNIAX - NUMBER OF UNIAXIAL STRESS-STRAIN POINTS

C ISUB - SUBINCREMENTATION FLAG(.NE.O) NO SUBINCS

C IDUMP2 - DUMPING CODE(EQ.O) NO PRINTS

C EM - YOUNG'S MODULUS

C VNU - POISSON'S RATIO



C Y - UNIAXIALYIELDPOINT
CBETA- HARDINGRATIO
CDEPSAL- ALLOWABLESTRAINSUBINCREMENT
C SX(d)- VALUEOF STRESS ON SIGMA-X VS EPSILDN-X CURVE

C EX(J) - VALUE OF STRAIN ON SIGMA-X VS EPSILON-X CURVE

C FGL - GLOBAL FORCE MATRIX

C NLCUR - NUMBER OF LOAD CURVES

C TIMV - TIME VALUE OF LOAD MULTIPLIER

C RV - LOAD MULTIPLIER

C ICURVE - LOAD CURVE NUMBER

C FORCE - SET EQUAL TO INITIAL UNIT GLOBAL FORCE MATRIX

C

OPEN(19,FILE='kdata.dat',READONLY,STATUS='OLD')

READ(19,107) INFILE

107 FORMAT(A)

OPEN(5,FILE=INFILE,STATUS='OLO')

READ(19,107) OUTFILE

OPEN(6,FILE:OUTFILE,STATUS:'UNKNOWN')

OPEN(8.FILE='kfordist.out',STATUS:'UNKNOWN')

WRITE(G,495G)

WRITE(8,4956)

495G FORMAT(//,SX,'DANCOM: MODIFIED KACHANOV MODEL',/)

READ(5,5002) TITLE
5002 FORMAT(AT5)

WRITE(6,5001) TITLE

WRITE(8,5001) TITLE

5001 FORMAT(//,A75//)

READ(5,*) NN,NEL,NF,NDBC,IDUMP,ITEMP,NLCUR,NSTE,
I IINT

CX READ(5,1001) NN,NEL,NF,NDBC,IDUMP,ITEMP,NLCUR,NSTE,

CX IIINT

CX 1001 FORMAT(915)

READ(5,*) RTOL,IPRI,ISREF,IEOUIT,ITEMAX,NOMAT

CX READ(5,1002) RTOL,IPRI,ISREF,IEQUIT,ITEMAX,NOMAT
CX 1002 FORMAT(FIO.G,SI5)

37 WRITE(6,2001) NN,NEL,NF,NDBC,NSTE,NOMAT
200i FORMAT(SX,'THE INPUT DATA ARE AS FOLLOWS',//,IOX,

I 'NUMBER OF NODES = ',IB./,10X,'NUMBER OF ELEMENTS = '

2 I6,/,IOX,'NUMBER OF EXTERNAL FORCE COMPONENTS = '

3 I3,/,IOX,'NUMBER OF DISP. BOUNDARY CONDITIONS = ',I3,/,
4 IOX,'NUMBER OF SOLUTION STEPS = ',16./,

5 IOX,'NUMBER OF MATERIAL MODELS USED = ',I3,//)

WRITE(6,2002) RTOL,IPRI,IDUMP,ISREF,IEQUIT,ITEMAX

2002 FORMAT(SX,'THE SOLUTION IS NONLINEAR',//,IOX,
1 'TOLERANCE FOR EQUILIBRIUM CONVERGENCE IS = ',F10.6,/,IOX,

2 'OUTPUT PRINTING INTERVAL = ',IB,/,IOX,

3 'OUTPUT FORMAT OPTION = ',I3,/,IOX,
4 'NO. OF ITER. BEFORE REFORMING STIFFNESS MATRIX = '

5 I3,/,lOX,

6 'NUMBER OF STEPS BETWEEN EQUILIBRIUM ITERATIONS = '.

7 I3,/,IOX,

8 'MAX NO. ITERATIONS BEFORE REFORMATIDN OF K MATRIX = '.

9 I3,//)
READ(5.*) (AI(I),A2(I),I=I.NN)

CX READ(B,1003) (AI(I),A2(I),I=I,NN)

CX 1003 FORMAT(2FIO.7)

WRITE(G,2003)
2003 FORMAT(//,IOX,'NODAL COORDINATES ARE',//,IOX,

1 'NODE NO.'18X,'Al',18X,'A2',//)

DO 17 II=I,NN

17 WRITE(G,2C04) II,AI(II),A2(II)

2004 FORMAT(IOX,I3,15X,FIO.4,10X,FIO.4)

DO 100 I=I.NEL

100 READ(5.*) IEL,(NODE(IEL.d),d=I,3),MATSET(IEL),

1 MTYPE(IEL)

CX I00 READ(5,1004) IEL,(NODE(IEL,d),J=I,3),MATSET(IEL),

CX IMTYPE(IEL)

CX 1004 FORMAT(BIS)

WRITE(G,2005)

2005 FORMAT(//,IOX,'GLOBAL NUMBERING OF ELEMENTS IS',

1 //,4X,'ELEMENT NO.',4X,'NODE I',4X,'NODE 2',

2 4X,'NODE 3',4X,'MATSET',5X,'MTYPE',//)

DO 1011=I,NEL

101WRITE(G,200G) I,(NODE(I,J),J=I,3),MATSET(I),MTYPE(I)
2006 FORMAT(SX,IS,2X,5(SX,I5))

DO 20 I=I,NEL

20 T(1)=I.O

22 CONTINUE

READ(5.*) (NDOF(I),I=I,NDBC)

CX READ(5.1005) (NDOF(1),I=I,NDBC)



CXi005 FORMAT(12IS)
WRITE(G,2023)

2023 FORMAT(//,IOX,

I 'THE DISP. BOUNDARY CONDITIONS ARE APPLIED

2 IOX,'DEGREES OF FREEDOM',//)

WRITE(6,2024)(NDOF(1),I=I,NDBC)

2024 FORMAT(IOX, IOI5)

READ(5,*) DEBARII

CX READ(5,7004) DEBAR11

CX 7004 FORMAT(FIO.6)

WRITE(6,7003) DEBAR11

7003 FORMAT(/,IOX,'DEBARll = ',FIO.B,/)
READ(5,*) (DINC(d),J=I,NDBC)

CX READ(5,7005) (DINC(J),d=I,NDBC)

CX 7005 FORMAT(6FIO.4)

WRITE(6,7006)

7006 FORMAT(IOX,'THE DISPLACEMENT INCREMENTS ARE',//)

WRITE(G,7007) (DINC(J),J=i,NDBC)

7007 FORMAT(5(2X,FIO.8) )
NTOT=2*NN

C

C ZERO GLOBAL FORCE MATRIX

C

DO 102 I=I,NTOT

102 FGL(I)=O.

CX

CX IF(NF.EQ.O) GO TO 504

CX

IF ( NF .EQ. 0 ) GO TO 6666

CX

WRITE(G,2007)

2007 FORMAT(//,SX,'FORCES ARE APPLIED AS FOLLOWS',//,SX,

1 'NODE NO.',2X,'LOAD CURVE NO.',5X,'A1FORCE',SX,

2 'A2 FORCE',//)

DO 103 I=I,NF

READ(5,*) INODE(I),ICURVE(I),FAI,FA2

CX READ(5,1006) INODE(I),ICURVE(1),FAi,FA2

CX iOOG FORMAT(215,2FIO.O)

WRITE(6,2008) INODE(1),ICURVE(I),FAI,FA2

2008 FORMAT(5X,I3,1OX,I3,2(SX,FIO.O))

C

C ASSEMBLE GLOBAL LINEAR FORCE MATRIX

C

NNi=2*INODE(1)-I

NN2=NNI+I

FGL(NNi)=FGL(NNI)+FAi

103 FGL(NN2)=FGL(NN2)+FA2

IF(IDUMP.LT.3) GO TO 6666

WRITE(G,2014)

2014 FORMAT(//,2OX,'GLOBAL LINEAR FORCE MATRIX',//)

WRITE(6,2015) (FGL(I),I=i,NTOT)

2015 FORMAT(3OX,Ei5.7)

666G CONTINUE

C

C LOAD CURVE MULTIPLIERS

C

DO 109 K=I,NLCUR

DO 110 L=I,NSTE
CX

READ(5,*) TIMV(K,L),RV(K,L),DMULT(K,L)

CX

CX

116

CX

115

CURVE AND DISPLACEMENT MULTIPLIERS',///)

114 FORMAT(' ',5X,'LOAD CURVE NO.',
1 2X,I3,//,IOX,'TIMV',13X,'RV',13X,'DMULT',/)

DO 115 L=I,NSTE

WRITE(6,11G) TIMV(K,L),RV(K,L),DMULT(K,L)
FORMAT(' ',3X,FIO.4,BX,FIO.4,8X,FIO.4)

CONTINUE

AT' ,/,

CX

C

CX READ(5,111) TIMV(K,L),RV(K,L)

CX 111FORMAT(2FIO.2)

110 CONTINUE

109 CONTINUE
WRITE(G,112)

112 FORMAT(' ',//,IOX,'LOAD

DO 113 K=I,NLCUR

WRITE(6,114)K

CX



113CONTINUE
504CONTINUE

C
C READIN MATERIALPROPERTIES
C

READ(S,*)MODNUMI,MODNUM2,MODNUM3,MODNUM4
CX READ(5,2507)MODNUMI,MODNUM2,MODNUM3,MODNUM4
CX2507 FORMAT(415)

IF(MODNUMI.EQ.O) GO TO 45i

C

C READ IN MATERIAL PROPERTIES FOR ELASTIC ELEMENTS
C

WRITE(6,670?) MODNUMI

G707 FORMAT(/,5X,'THERE ARE ',I3,' ELASTIC MATERIAL SETS',

1 /,'SET NO.',6X,'E1",13X,'E2",13X,'NU12',

2 13X,'G12',IOX,'Yl',14X,'Y2',/)
DO 559 I=I,MODNUM1

READ(5,*) MATNO,EMI(MATNO),EM2(MATNO),VNU(MATNO),
1 G12(MATNO),Y1(MATNO),Y2(MATNO)

CX READ(5,6700) MATNO,EM(MATNO),VNU(MATNO),Y(MATNO)
CX 6700 FORMAT(4X,I5,3E15.7)

WRITE(6,6702) MATNO,EMI(MATNO),EM2(MATNO),VNU(MATNO),

1 G12(MATNO),Yl(MATNO),Y2(MATNO)
6702 FORMAT(2X,I3,3X,6(1X,E14.7))

559 CONTINUE

451 CONTINUE

IF(MODNUM2.EO.O) GO TO 452
C

C READ IN MATERIAL PROPERTIES FOR ELASTIC-PLASTIC ELEMENTS
C

WRITE(G,6701) MODNUM2

6701 FORMAT(/,SX,'THERE ARE ',I3,

1 ' ELASTIC-PLASTIC MATERIAL SETS',/)

READ(S,') ISUB,IDUMP2,BETA,DEPSAL

CX READ(5,20SO) ISUB,IDUMP2,BETA,DEPSAL

CX 2050 FORMAT(215,FIO.O,FIO.2)

WRITE(G,2060) ISUB,IDUMP2,BETA,DEPSAL

2060 FORMAT(IOX,'SUBINCREMENTATION FLAG = ',I5,/,

1 IOX,'DUMPING CODE = ',I5,/,IOX,'BETA = '
2 FIO.4,/,IOX,'ALLOWABLE STRAIN SUBINCREMENT = '

3 FIO.5,//)
DO 363 I=I,MODNUM2

READ(5,*) MATNO,NUNIAX(MATNO),EM(MATNO),
1 VNU(MATNO),Y(MATNO)

READ(5,2390) MATNO,NUNIAX(MATNO),EM(MATNO),

IVNU(MATNO)oY(MATNO)

2390 FORMAT(215,FIO.O,FIO.4,FIO.O)

READ(S,2070) (SX(d,MATNO),EX(d,MATNO),J=I,NUNIAX(MATNO))

2070 FORMAT(BFIO.O)

WRITE(B,2040) MATNO

2040 FORMAT(IOX,'MATERIAL SET NUMBER = ",I5,/)

WRITE(G,2043) EM(MATNO),VNU(MATNO),Y(MATNO)

2043 FORMAT(IOX,'MODULUS OF ELASTICITY = ',E14.7,/,

1 IOX,'POISSONS RATIO = ',E14.7,/,

2 IOX,'YEILD POINT = ',E14.7,/)
WRITE(6,2080)

2080 FORMAT(IOX,'THE INPUT UNIAXIAL STRESS-STRAIN DATA ARE',/,

1 14X,'STRESS',14X,'STRAIN',//)

DO 10 d=I,NUNIAX(MATNO)

WRITE(6,2090) SX(J,MATNO),EX(d,MATNO)

2090 FORMAT(IOX,FIO.2,1OX,FIO.5)
10 CONTINUE

WRITE(G,3000)

3000 FORMAT(//,IOX,'THE UNIAXIAL K VS EPBAR DATA ARE',//,

1 19X,'K',15X,'EPBAR',//)
DO 11U=I,NUNIAX(MATNO)

EPX(d,MATNO)=EX(d,MATNO)-SX(d,MATNO)/EM(MATNO)

SP(J,MATNO)=Y(MATNO)+(SX(d,MATNO)-Y(MATNO))*BETA

WRITE(G,2090) SP(J,MATNO),EPX(J,MATNO)
11 CONTINUE

363 CONTINUE

DO 1007 J=I,NEL

IF(MTYPE(d).NE.2) GO TO 1040

EPBAR(d):O.O

IPLAS(J)=O

SIGBAR(J)=Y(MATSET(d))

00 1008 I=1,4

ALPHA(I,d):O.O
1008 CONTINUE

1040 CONTINUE

CX

CX

CX



1007 CONTINUE

452 IF(MODNUM3.EQ.O) GO TO 453

WRITE(6,2200) MODNUM3

2200 FORMAT(/,5X,'THERE IS ',I3,' VISCOPLASTICITY MODEL',/)
DO 222 I:I,MODNUM3

WRITE(G,2201) I

2201FORMAT(IOX,'VISCOPLASTICITY MODEL NO. ',I2)

READ(5,*) DTIME,DEVPAL

CX READ(5,2100) DTIME,DEVPAL

CX 2100 FORMAT(2EI5.7)

WRITE(6,2101) DTIME,DEVPAL

2101 FORMAT(IOX,'TIME STEP = ',E14.7,/,

I IOX,'ALLOWABLE STRAIN SUBINCREMENT = ',E14.7,/)

READ(5,*) MATNO,EM(MATNO),VNU(MATNO),Y(MATNO)

CX READ(5,2398) MATNO,EM(MATNO),VNU(MATNO),Y(MATNO)

CX 2398 FORMAT(I5,FIO.O,FIO.4,FIO.O)

WRITE(6,2040) MATNO

WRITE(6,2043) EM(MATNO),VNU(MATNO),Y(MATNO)

READ(5,2202) RN,HI,H2,AAI,AA2,C2,DO,Bi,TEMP,TMELT,QS

2202 FORMAT(4E15.7)

WRITE(G,2203) RN,Hi,H2,AAI,AA2,C2,DO,BI,TEMP,TMELT,QS

2203 FORMAT(IOX,'RN = ',EI5.T,IX,'Hi = ',E15.7,/,

1 IOX,'H2 = ',E15.7,1X,'AA1 = ',E15.7,/,

2 IOX,'AA2 = ',E15.7,1X,'C2 = ',E15.7,/,

3 IOX,'DO = ',E15.7,1X,'BI = ',E15.7,/,

4 IOX,'TEMP = ',EI5.?,IX,'TMELT = ',E15.7,/,
5 IOX,'QSTAR = ',E15.7,/)

222 CONTINUE

DO 5007 J=I,NEL
IF(MTYPE(j).NE.3) GO TO 5004

EPBAR(J)=O.O

IPLAS(J)=O

SIGBAR(d)=DO

DO 5008 I=I,4

ALPHA(I,d)=O.O

5008 CONTINUE

5004 CONTINUE

5007 CONTINUE

453 IF(MODNUM4.EQ.O) GO TO 455

GO TO 450

450 WRITE(B,5095)

5095 FORMAT(IOX,'MATERIAL MODEL NOT IN CODE',//)
STOP

455 CONTINUE

IF(IINT.EQ.O) GO TO 9999

CX READ(5,*) NINT1,NINT2,ETA

CXCX READ(5,4001) NINTI,NINT2,ETA

CXCX 4001FORMAT(215,E15.7)

CX READ(5,*) SIGMAX,DELTA,ALPH,DBFAC

CXCX READ(5,4002) SIGMAX,DELTA,ALPH,DBFAC
CXCX 4002 FORMAT(4E15.7)

CX WRITE(6,4003)

CX 4003 FORMAT(/,5X,'INTERFACE ELEMENTS IN EFFECT',/)

CX WRITE(6,4004) NINTI,NINT2,SIGMAX,DELTA,ALPH

CX 4004 FORMAT(IOX,'INTERFACE ELEMENTS START AT NODE NO.',

CX 1 I5,/,lOX,

CX 2 'AND END AT NODE NUMBER',I5,/,

CX 3 IOX,'MAX NORMAL INTERFACE STRESS = ",E15.7,/,

CX 4 IOX,'LENGTH PARAMETER = ',E15.7,/,
CX 5 IOX,'RATIO SHEAR/NORMAL INTERF. STIFFNESS = •

CX 6 E15.7,/)

CX WRITE(6,4008) DBFAC,ETA

CX 4008 FORMAT(IOX,'DEBOND COMPRESSIVE FACTOR = ',E15.7,/
CX

CX

C

C

C

5OOO
C

C

C

1 IOX,'UNLOADING STRETCH FACTOR = ',E15.7,/)

READ IN NO. OF INTRF ELEMS AND GROUPS

READ(5,*) NIFEM, NIFGP

READ IN FIRST AND LAST ELEMENT

DO 5000 d = 1, NIFGP

READ(5,*) ITGPL(d,1), ITGPL(d,2)
CONTINUE

READ IN INTRF CONNECTIVITY MATRIX

DO 5050 d = 1, NIFEM

READ(5,*) ITCON(J,1), ITCON(G,2)



5050 CONTINUE

READ IN INTERFACE CONSTITUTIVE CONSTANTS

DO 5400 d = I, NIFGP

READ(5,*) SIGMAX(j), DELTAN(J), DELTAT(d), ALPH(J), ETA(d),

1 DBFAC(d), RMU(J), RMPI(d), RMP2(J), RMP3(J)

COMMON BLOCK SET FOR RMPI(IO) TO RMPIO(IO)

USE ONLY RMPI(d) TO RMP3(J) FOR NOW

5400 CONTINUE

READ IN SELECTED ELEMENT NUMBERS FOR STRESS OUTPUT

CX

CX

CX

CX

CX

CX

CX

CX

C

READ(5,*) ISELSIG

IF ( ISELSIG .NE. 0 ) THEN

READ(5,*) NUMSELSIG

READ(5,*) (MSELSIG(J), d = I, NUMSELSIG)

WRITE(6,5475) NUMSELSIG

5475 FORMAT(//,IOX,I5,' ELEMENTS SELECTED FOR STRESS OUTPUT:',/)

WRITE(6,5485) (MSELSIG(J), d=I,NUMSELSIG)

5485 FORMAT(515)

ENDIF

C

C OUTPUT INTERFACE ELEMENT INFORMATION

C

WRITE(6,5100)

5100 FORMAT(//,IOX,'INTERFACE ELEMENTS IN EFFECT',/)

IF ( NIFGP .GT. I ) THEN

WRITE(6,5150) NIFEM, NIFGP

5150 FORMAT(IOX,'THERE ARE ',I5,' INTERFACE ELEMENTS.',/

I IOX,'THEY ARE DIVIDED INTO ',I5,' GROUPS.',/)

ELSE

WRITE(6,5152) NIFEM, NIFGP

5152 FORMAT(IOX,'THERE ARE ',I5,' INTERFACE ELEMENTS.',/

1 IOX,'THEY ARE ASSIGNED TO ',I5,' GROUP.',/)

ENDIF

WRITE(6,5160)

5160 FORMAT(/,IOX,'GROUP NO.',IOX,'FIRST INTRF. ELEM.'

1 IOX,'LAST INTRF. ELEM.',/)

WRITE(6,5170) (d,ITGPL(J,I),ITGPL(d,2) ,J=I,NIFGP)

5170 FORMATI IOX,I5,18X,15,22X,I5)

WRITE(6,5200)

5200 FORMAT(//,IOX,'INTERFACE ELEMENT NO.',5X,'NODE I',IOX,

I 'NODE 2',/)

WRITE(6,5250) (d,ITCON(d,I),ITCON(d,2) , d=I,NIFEM)

5250 FORMATi 16X,I5,12X,I5,10X,I5)

DO 52?5 d = I, NIFGP

WRITE(6,5300) d, SIGMAX(d), DELTAN(d), DELTAT(d), ALPH(d),

I ETA(J), DBFAC(d), RMU(J), RMPI(d), RMP2(d), RMP3(J)

5275 CONTINUE

CX

CX5300 FORMAT(//,IOX,'GROUP NO.',I5,/

1 IOX,'MAX NORMAL INTERFACE STRESS= ',E15.7,/,
2 IOX,'NORMAL LENGTH PARAMETER= ',E15.7,/,

3 IOX,'TANGENTIAL LENGTH PARAMETER= ',E15.7,/,

4 IOX,'SHEAR/NORMAL INTERFACE STIFFNESS RATIO= ',E15.7,/,

5 IOX,'UNLOADING STRETCH FACTOR= ',E15.7,/

6 IOX,'DEBOND COMPRESSIVE FACTOR= ',E15.7,/

7 IOX,'INTERFACIAL COEFFICIENT OF FRICTION= ',E15.7,/)

5300 FORMATt

1 lOX

2 lOX

3 lOX

4 lOX
5 lOX

6 IOX
7 lOX

8 lOX

CX

9999 CONTINUE

RETURN

END
C

KACHANOV'S MODEL

//,IOX,'GROUP NO.',I5,/

'YOUNGS MODULUS= ',EiS.?,/,

'POISSONS RATIO= ',E15.7,/,

'SHEAR MODULUS= ',E15.7,/,

'CRITICAL TENSILE STRAIN= ",E15.7,/,

'RLAMDA= ',Ei5.7,/,

'RL= ',E15.7,/,

'RBETA= ',E15.7,/,

'RMPI= ',E15.7,/,IOX,'RMP2= ',E15.7,/,IOX,'RMP3= ',E15.7,/)

C

C SUBROUTINE KGLOB



C

C THIS SUBROUTINE CALCULATES THE LINEAR OR NONLINEAR GLOBAL
C STIFFNESS MATRIX

C

C

SUBROUTINE KGLOB(KGL,NODE,NTOT,NDOF)

IMPLICIT REAL*B(A-H,O-Z)

REAL*8 KGL(2400,600),KEL(6,6),B(3,6),BC(6,3),C(3,3),T(1BO0),

1 DS(1500,4),KGS(2400,600),RKINT(4,4),DN(500),OT(500)

INTEGER NODE(1500,3),NDOF(1500),NICON(2),MATSET(1500),MTYPE(1500)
COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

1 IEQUIT,ITEMAX,ITEMP,IINT

CX COMMON/INTFAC/NINTI,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP,ITGPL(IO,2),ITCON(500,2),

1 SIGMAX(IO),DELTAN(IO),DELTAT(IO),ALPH(IO),

2 ETA(IO),DBFAC(IO),DN,DT,INTDF(5OO),INTSP(500)

3 ,RMU(IO),DISPN(5OO),DISPT(5OO),TNRATIO(500),
4 XRHO(5OO),SIGNN(5OO),TAUNT(5OO),FN(5OO),FT(500)

COMMON/MODPARA/RMPI(IO),RMP2(IO),RMP3(IO),RMP4(IO),RMP5(IO),

1 RMP6(IO),RMPT(IO),RMP8(IO),RMP9(IO),RMPIO(IO)
COMMON/AREA1/B

COMMON/AREAS/T,MATSET,MTYPE

COMMON/AREAT/NSTE,INCR,ITER

COMMON/BANDED/MAXBW

COMMON/STIF/KGS

DO 44 I=I,NTOT

DO 44 d=I,MAXBW
44 KGL(I,J)=O.

DO 99 I=I,NEL

C DETERMINE ELEMENT STIFFNESS MATRIX

CALL SHAPE(I,IDUMP,AREA)

IF(MTYPE(I).EQ.I) GO TO 451

IF(MTYPE(I).EQ.2) GO TO 452

IF(MTYPE(I).EQ.3) GO TO 453
IF(MTYPE(I).EQ.4) GO TO 454

450 WRITE(6,6003)

6003 FORMAT(IOX,'MATERIAL TYPE NOT IN CURRENT LIBRARY',/)
STOP

451 CALL ELAS2D(I,C,DS,MATSET(I))
GO TO 455

452 CALL PLAS2D(I,C,DS,1,MATSET(I))
GO TO 455

453 CONTINUE

CALL VPLAS2D(I,C,DS,1,MATSET(I))
GO TO 455

454 GO TO 450
455 CONTINUE

DO 66 L=1,6
DO 66 d=l,3

BC(L,d)=O.

DO 66 K=1,3

66 BC(L,J)=BC(L,U)+B(K,L)*C(K,J)
DO 67 L=1,6

DO 67 _=1,6
KEL(L,J)=O.

DO 67 K=1,3

67 KEL(L,U)=KEL(L,U)+BC(L,K)=B(K,U)
DO 68 L=1,6

DO 68 J=1,6

68 KEL(L,J)=AREA*KEL(L,U)*T(I)
IF(IDUMP.LT.4) GO TO 7777

WRITE(6,2011) I

2011FORMAT(//,2OX,'ELEMENT STIFFNESS MATRIX FOR ELEMENT NO.'

I3,//)
DO 54 L=1,6

54 WRITE(6,2012) (KEL(L,J),U=I,6)
2012 FORMAT(4(5X,E15.7) )
7777 CONTINUE

C ASSEMBLE ELEMENT STIFFNESS MATRIX INTO GLOBAL LINEAR STIFFNESS
C MATRIX

CALL ASEMBL(KGL,KEL,3,NODE,2,I)
99 CONTINUE

IF(IINT.EQ.O) GO TO 98

CX NINEL=NINT2-NINTI+I

CX II=NINT1

CX I2=II+NINEL

CX DO 97 I=I,NINEL

CX CALL INTRFACE(I,II,I2,RKINT)
CX NICON(1)=II



CX NICON(2)=I2

CX CALL ASEMINT(KGL,RKINT,2,NICON,2)

CX I1=I1+i

CX 12=I2+i

CX 97 CONTINUE

CX

CX

CX

CX

CX

550

500

CX

98

2013

2040
6666

988

C
C

C

C

50

51

52

999

C

C

C

C****

C

C
C

C

C

DO 500 I = I, NIFGP

DO 550 U = ITGPL(I,I), ITGPL(I,2)

IF ( d .EQ. ITGPL(I,I) ) THEN

ITFLAG = I

ELSE IF ( d .EQ. ITGPL(I,2) ) THEN

ITFLAG = 2

SPECIAL TRUSS ELEMENT FOR FORCE CALCULATIONS

ELSE IF (ITGPL(I,I) .EQ. ITGPL(I,2) ) THEN

ITFLAG = 3

ELSE

ITFLAG = 0

ENDIF

II = ITCON(J,I)

12 = ITCON(d,2)

CALL INTRFACE(d,II,I2,RKINT,ITFLAG,I)

NICON(1) = 11

NICON(2) = I2

CALL ASEMINT(KGL,RKINT,2,NICDN,2)

CONTINUE

CONTINUE

CONTINUE

IF(IDUMP.LT.4) GO TO 6666

WRITE(G,2013)
FORMAT(//,2OX,'GLOBAL LINEAR STIFFNESS MATRIX',//)

WRITE(G,2040) ((KGL(II,JJ),Jd=I,MAXBW),II=I,NTOT)

FORMAT(4(5X,EI5.?) )

CONTINUE

DO 988 I=I,NTOT

DO 988 d=I,MAXBW
KGS(I,d)=KGL(I,d)

APPLY DISPLACEMENT BOUNDARY CONDITIONS

ZERO-ONE TREATMENT TO STIFFNESS MATRIX

DO 999 I=I,NDBC

dd=NDOF(I)

KGL(dJ,I)=I.O

DO 50 d=2,MAXBW

KGL(dJ,J)=O.DO

dd=dd-1

M=2
IF(M.GT.MAXBW.OR.dd.LT.I) GO TO 52

KGL(JJ,M)=O.DO

dd=dd-1
M=M+I

GO TO 51

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE SHAPE

THIS SUBROUTINE CALCULATES THE P AND D MATRICES

C

SUBROUTINE SHAPE(I,IDUMP,AREA)

IMPLICIT REAL*8(A-H,O-Z)

REAL*B B(3,G),Al(1200),A2(t200),T(1500)
INTEGER NODE(1500,3),NDOF(1500),MATSET(1500),MTYPE(1500)

COMMON/AREA1/B

COMMON/AREA2/NODE,NDOF
COMMON/AREAS/T,MATSET,MTYPE

COMMON/AREA6/A1,A2

COMMON/AREA?/NSTE,INCR,ITER



4639

4635

4638
4637

C

C

C

C

XI=AI(NOOE(I 1))
X2=AI(NODE(I 2))

X3=AI(NODE(I 3))

ZI=A2(NODE(I 1))
Z2=A2(NODE(I 2))

Z3=A2(NODE(I 3))

AREA=(X2*Z3+Xl*Z2+X3*ZI-X2*ZI-X3*Z2-XI*Z3)/2.

B(1,1)=(Z2-Z3)/2./AREA

B(2,2)=(X3-X2)/2./AREA

B(1,3)=(Z3-Z1)/2./AREA

B(2,4)=(XI-X3)/2./AREA
B(1,5)=(ZI-Z2)/2./AREA

B(2,6)=(X2-X1)/2./AREA

B(1,2)=0.

B(1,4)=0.

B(1,6)=0.

B(2,1)=0,
B(2,3)=0.

B(2,5)=0.

B(3,1)=B(2,2)

B(3,2)=B(1,1)

B(3,3)=B(2,4)

B(3,4)=B(I,3)
B(3,5)=B(2,6)

B(3,G)=B(1,5)

IF(IDUMP.LT.4) GO TO 4637

ISHAPE=O

IF(ISHAPE.NE.1) GO TO 4637

DO 4635 J=1,3
WRITE(6,4639)(B(J,K),K=l,6)

FORMAT(" ',2X,G(E13.6,2X))

CONTINUE

WRITE(6,4638) AREA,T(1)

FORMAT(' ',3X,'AREA=',EI4.?,3X,'THICKNESS=',E14.7,//)

CONTINUE

RETURN

END

C

CX

CX

C

C CALCULATE
C

CX

cx
cx

cx

CXlO0

SUBROUTINE INTRFACE

SUBROUTINE INTRFACE(II,II,I2,RKINT,ITFLAG,IG)

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 RKINT(4,4),Q(2400),T(1500),Al(1200),A2(1200),

I DN(5OO),DT(500)

DIMENSION MATSET(1500),MTYPE(1500)
COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

I IEQUIT,ITEMAX,ITEMP,IINT

COMMON/DISPHIS/DELTAQ(2400),WORKN(500),WORKT(500),FSEPN(500),

1 FSEPT(500)

COMMON/AREA4/Q

COMMON/AREA5/T,MATSET,MTYPE

COMMON/AREA6/A1,A2

COMMON/AREAT/NSTE,INCR,ITER

COMMON/INTFAC/NINTI,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP,ITGPL(IO,2),ITCON(500,2),

1 SIGMAX(IO),DELTAN(IO),DELTAT(IO),ALPH(IO),
2 ETA(IO),DBFAC(IO).DN,DT,INTDF(5OO),INTSP(500)

3 ,RMU(IO),DISPN(5OO),DISPT(5OO),TNRATIO(500),

4 XRHO(5OO),SIGNN(5OO),TAUNT(5OO),FN(5OO),FT(500)

COMMON/MODPARA/RMPI(IO),RMP2(IO),RMP3(IO),RMP4(IO),RMPS(IO),
1 RMP6(IO),RMP?(IO),RMPS(IO),RMP9(IO),RMPIO(IO)

PI=3.141592654

IF ( ITFLAG .EQ. 3 ) GO TO 711
NINEL=NINT2-NINTI+I

IIMIX : II - I

IIPIX = II + 1

IIMI = ITCON(IIMIX,I)

IIPI = ITCON(IIPIX,I)

WRITE(G,100) IIM1, A1(I1M1), A2(I1M1)
WRITE(6,100) I1, A1(I1), A2(11)

WRITE(6,100) IIPI, AI(IIPI), A2(IIPI)

FORMAT(/,5X,IS,IOX,EI5.4,10X,E15.4,/)

INTERFACE (NORMAL) ANGLE PHI AND WIDTH W



CX
IF ( A2(IIMI) .EQ. A2(II) ) THEN ! MODIFIED FOR 90 DEG.

PHIl = PI / 2.0
ELSE

PHII:DATAN((AI(II)-AI(IIMI))/(A2(IIWI)-A2(II)))
ENDIF

IF ( A2(I1) .EQ. A2(IIPI) ) THEN ! MODIFIED FOR 90 DEG.

PHI2 = PI / 2.0

ELSE

PHI2:DATAN((AI(IIPI)-AI(II))/(A2(II)-A2(IIP1)))
ENDIF

WIWI : (AI(II) - AI(IIMI) )**2 +

I (A2(IIMI) - A2(11) )*'2

W2W2=(A1(IIP1) - A1(I1) )**2 +

1 (A2(I1) - A2(I1PI) )*'2

Wl = SQRT(W1WI)
W2 : SQRT(W2W2)

C

C ACCOUNT FOR FIRST AND LAST ELEMENT

C

CX IF(II.GT.I) GO TO 334

CX IF(PHI2.LT..OO1) GO TO 443
CX PHIl=3.14159265-PHI2

CX GO TO 3314

CX 443 PHIl=PHI2
CX 3314 Wl=O.

CX 334 CONTINUE

CX IF(II.LT.NINEL) GO TO 335

CX IF(PHII.LT..O01) GO TO 444

CXCX PHI2=-PHII

CX PHI2 = PHI1

CX GO TO 3334

CX 444 PHI2=PHI1

CX 3334 W2=O.

CX 335 CONTINUE
CX

711 CONTINUE

IF ( ITFLAG .EQ. I ) THEN

PHIl = PHI2

Wi=O.O

ELSE IF ( ITFLAG .EQ. 2 ) THEN

PHI2 : PHIl

W2 = 0.0

FORCE CALCULATION TRUSS ELEMENTCX
CX

CX

CX

ELSE IF ( ITFLAG .EQ. 3 ) THEN

Wl : 1 .0

W2 = 1.0

PHIl = PI / 2.0

PHI2 : PI / 2.0

ENDIF

CX

C

C INITIALIZE INTERFACE ELEMENT STIFFNESS RKINT

C

DO 9 I=I,4

DO 9 d=l,4

9 RKINT(I,J)=O.

C

C CALCULATE INTERFACE DISPLACEMENTS UNI,UN2,UTI,UT2
C

NIX=2*II-1

N1Y=N1X+I

N2X=2*I2-1
N2Y=N2X+I

PHIAV=(PHII+PHI2)/2.

UX=Q(N2X)-Q(NIX)

UY=Q(N2Y)-Q(NIY)

CY UN=UX*DCOS(PHIAV)+UY*DSIN(PHIAV)

CY UT=-UX*DSIN(PHIAV)+UY*DCOS(PHIAV)

THETAI = PHIAV - ( PI / 2.0 )

UN = -UX * DSIN(THETAI) + UY * DCOS(THETAI)

UT = UX * DCOS(THETAI) ÷ UY * DSIN(THETAI)
CY

DN(II)=UN

DT(II)=UT

C

DUX = DELTAQ(N2X) - DELTAQ(NIX)



DUY= DELTAQ(N2Y) - DELTAO(NIY)

DUN = -DUX * DSIN(THETAI) + DUY * DCOS(THETAI)

DUT = DUX * DCOS(THETAI) + DUY * DSIN(THETAI)
C

C

C CALCULATE NORMAL AND SHEAR STIFFNESS COMPONENTS

RKNI,RKN2,RTNI,RTN2

ASSIGN VARIABLES FOR KACHANOV'S MODEL

EO : SIGMAX(IG)

RNU : DELTAN(IG)

GO = DELTAT(IG)

ESPCRIT : ALPH(IG)

RLAMBDA : ETA(IG)

RL = DBFAC(IG)

RBETA : RMU(IG)

C CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS

EO = EO / ( 1.0 - (RNU**2))

RNU = RNU / ( 1.0 - RNU )

CX

IF ( ITFLAG .EO. 3 ) GO TO 713
CX

C NOTE: THESE ARE TANGENT STIFFNESSES

C

C NEEDLEMAN OR TVERGAARD

CX UND = UN / DELTAN(IG)

CX UTD = UT / DELTAT(IG)
C

C ........................................

C KACHANOV

C

UND = UN / RL

UTD = UT / RL

OUND = DUN / RL

DUTD = OUT / RL

C

C

C KACHANOV'S MODEL

C

C STIFFNESS CALCULATIONS
C

C

C AREA ....................... TRUSS ELEMENT CROSS SECTIONAL AREA

C RL ......................... THICKNESS OF INTERFACE (INP.)

C EO ......................... YOUNG'S MODULUS OF INTERFACE (INP.)

C GO ......................... SHEAR MODULUS OF INTERFACE (INP.)

C RNU ........................ POISSION'S RATIO OF INTERFACE (INP.)

C ESPCRIT .................... CRITICAL TENSILE STRAIN (INP.)

C RLAMBDA .................... DAMAGE GROWTH PROPORTIONAL CONST. (INP.)
C RAREA ...................... AREA OF DAMAGED ZONE

C RLENGTH .................... CRACK LENGTH

C RBETA ...................... RLENGTH / RL (INP.)
C

C

CX CALCULATE PRINCIPLE NORMALIZED DISPLACEMENTS
C

RLSQ = ( UNO / 2.0 )**2 + ( UTD / 2.0 )**2
RLAM = SORT( RLSQ )

UMI = UND / 2.0 + RLAM

UM2 = UND / 2.0 - RLAM

UMAX : DMAXi( UMI , UM2 )

AREA = ( Wl + W2 ) / 2.0 * T(1)

RAREA = AREA / T(1) * RL

C

IF ( UMAX .LE. ESPCRIT ) THEN t INTERFACE INTACT
C

IF ( UND .EQ. 0.0 .AND. UTD .EQ. 0.0 ) THEN

Q22 = EO / ( 1.0 - RNU*RNU )
066 = GO

RKN = 022 * AREA / RL
RKT = Q66 * AREA / RL

ELSE

IF ( UND .LT. 0.0 ) THEN ! MODIFY DISPLACEMENTS

UNDC = 0.0 ! FOR COMPRESSIVE LOADS

C

C

CX

C

C



CX
CX

c
C

C

CXX

CXX

CXX

CX
CXX

CXX

CXX

CXX

CXX

CXXY
CXX

C

C

C

CXX

CXX

CXX

C

C

CXX

CXX

CXX

CXX

CXX

CXX

CXX

CXX

C

C

C

CXY

CXY

CXY

CXY

C

C

C

CXY

CXY

CXY

CXY

CXY

C

C

C

CXY

CXY

UTDC = UTD

ELSE

UNDC = UND

UTDC = UTD

ENDIF

TRANSFORM NORMALIZED DISPLACEMENTS TO PRINCIPLE DAMAGE

COORDINATES (1,2)

(CURRENTLY ASSUME ALL MATRIX CRACKS TO BE ORIENTED

AT AN 45 DEGREES ANGLE)

P4 = PI / 4.0

P42 = P4 * 2.0

DC2 = DCOS(P4) * DCOS(P4)

UNDPD = -UTD*DSIN(P4) + UND*DCOS(P4)

UTDPD = UTD*DCOS(P4) + UND*DSIN(P4)

UNDPD = UNDC * DC2 - ( 0.5 * UTDC ) * DSIN(P42)

UTDPD = 0.5 * UNDC * DSIN(P42) + ( 0.5 * UTDC ) * DCOS(P42)
DUNDP = DUND * DC2 - ( 0.5 * DUTD ) * DSIN(P42)

DUTDP = 0,5 * DUND * OSIN(P42) + ( 0.5 * DUTD ) * DCOS(P42)

DETERMINE EFFECTIVE PROPERTIES

MODIFICATION FOR STRESS DEPENDENT DAMAGE GROWTH

RI = RLAMBDA * DABS(UNDPD)

RI = RLAMBDA * DABS(UTDC)

RLENGTH = RBETA * RL

RHO = RI * RLENGTH**2 / RAREA

RHO = DMAXI( RHO, XRHO(II) )

XRHO(II) = RHO

RHO = XRHO(II)

! RLAMBDA * UNDPD
! RLAMBDA * UTDC

! RBETA * RL

RHO = XRHO(II)

E1 = EO I EO DEPENDS ON PLANE STRESS

E2 = EO / ( 1.0 + 2.0*PI*RHO ) ! OR PLANE STRAIN CONDITIONS
RNUi2 = RNU

RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)

G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EO) )

FORM REDUCED STIFFNESS MATRIX

QI1 = El / ( 1.0 - RNU12*RNU21 )
Q12 = RNU21 * Qll

Q22 = E2 / ( 1.0 - RNU12*RNU21 )
Q66 = G12

BEGIN CXX MODIFICATIONS HERE

CALCULATE PRINCIPAL STRESSES

SIGNN(II) = SIGNN(II) + Q22 * DUNDP

TAUNT(II) = TAUNT(II) + OBG * DUTDP

SIGSIG = (SIGNN(II) / 2.0 )**2 + (TAUNT(II) / 2.0 )*'2

RSIG = SQRT(SIGSIG)

SIGMI = SIGNN(II)/2.0 + RSIG

SIGM2 = SIGNN(II)/2.0 - RSIG

SIGPRIN = DMAXI(SIGMI,SIGM2)
TAUMAX = RSIG

CALCULATE THE VALUE OF RHO (MICRO CRACK DAMAGE)

RI = RLAMBDA * DABS(SIGPRIN)

RLENGTH = RBETS * RL

RHO = RI * RLENGTH**2 / RAREA

XRHO(II) = DMAXI( RHO, XRHO(II) )

CALCULATE EFFECTIVE PROPERTIES WITH UPDATED VALUE OF RHO

El = EO I EO DEPENDS ON PLANE STRESS

E2 = EO / ( 1.0 + 2.0*PI*RHO ) ] OR PLANE STRAIN CONDITIONS
RNUI2 = RNU

RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)

G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EO) )

FORM REDUCED STIFFNESS MATRIX

QII = El / ( 1.0 - RNUI2*RNU2i )

QI2 = RNU21 * QII



CXY
CXY
CXX
CXX
CXX
C
C
C

C
C
C
C
C
CX
CX
CX
CX
CX
CX
CX
CX
CX
CX
CYX
CX

022 = E2 / ( 1.0 - RNU12*RNU21 )
066 = G12

END CXX MODIFICATION

TRANSFORM SELECTED STIFFNESS COMPONENTS TO INTERFACIAL CODRD.

(-45 DEG)

PN4 = -PI / 4.0

QBARII : QII*DCOS(PN4)**4

1 + 2.0"( 012 + 2.0*066 )*DSIN(PN4)**2*DCOS(PN4)**2
2 + Q22*DSIN(PN4)**4

QBARI2 = ( 011 + 022 - 4.0*Q66 )*DSIN(PN4)**2
1 *DCOS(PN4)**2

2 + 012"( DSIN(PN4)**4 + DCOS(PN4)**4 )
QBAR22 = 011*DSIN(PN4)'*4

1 + 2.0"( 012 + 2.0"066 )*DSIN(PN4)**2*DCOS(PN4)**2
2 + 022*DCOS(PN4)*'4

QBAR16 = ( 011 - 012 - 2,0*066 )_DSIN(PN4)*DCOS(PN4)**3

1 + ( Q12 - 022 + 2.0*066 )*DSIN(PN4)**3*DCOS(PN4)
QBAR26 = ( 011 012 - 2.0*066 )*DSIN(PN4)**3*DCOS(PN4)

1 + ( 012 - 022 + 2.0*066 )*DSIN(PN4)*DCOS(PN4)**3
OBAR66 = ( 011 + 022

1 2.0*(012+066))=DSIN(PN4)**2*DCOS(PN4)**2
2 + 066*( DSIN(PN4)**4 + DCOS(PN4)**4 )

INVERT TRANSFORMED REDUCED STIFFNESS MATRIX TO DETERMINE

$22 AND $66 OF MATERIAL, THEN TAKE RECIPROCAL TO GET

ED22 AND GD12

$22 = ( QBARll * QBAR66 - QBAR16**2 ) /
( QBAR11 * OBAR22 * QBAR66 - QBAR12**2 * QBAR66 -

QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -
QBAR16**2 * QBAR22 )

$66 = ( QBAR11 * QBAR22 - QBAR12**2 ) /
( QBARll * OBAR22 * QBAR66 - QBAR12**2 * QBAR66 -

QBARll * OBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -

OBAR16**2 * QBAR22 )
ED22 = 1.0 / S22

GD66 = 1.0 / $66

WRITE(6,8899) ED22,GD66

CX 8899 FORMAT(5X,'ED22= ',E15.5,5X,'GD66= ',E15.5)
CYX

CX RKN = ED22 * AREA / RL

CX RKT = GD66 * AREA / RL

RKN = QBAR22 * AREA / RL

RKT = QBAR66 * AREA / RL
C

IF ( UND .LT. 0.0 ) THEN ! MODIFY NORMAL STIFFNESS
CY RKN = lO.OE2 * QBAR22 * AREA / RL ! FOR COMPRESSIVE LOADS

RKN = QBAR22 * AREA / RL
CY

ENDIF

CX CHECK FOR PRIOR INTERFACIAL FAILURE
IF ( INTDF(II) .GT. 0 ) THEN

RKT = 0.0

IF ( UND .GT. 0.0 ) THEN

RKN = 0.0

ENDIF

ENDIF

ENDIF

C

ELSE ! INTERFACE SEPARATED

C

IF ( UND .LT. 0.0 ) THEN

022 = EO / ( 1.0 - RNU*RNU )

CY RKN = 10,0E2 * 022 * AREA / RL

RKN = 022 * AREA / RL
CY

RKT = 0.0

ELSE

RKN = 0.0

RKT = 0.0
ENDIF

ENDIF



713 CONTINUE

CX FORCE CALCULATION ELEMENT

CX

IF ( ITFLAG .EQ. 3 ) THEN

AREA = ( Wl + W2 ) / 2.0 * T(1)

Q22 = EO / ( 1.0 - RNU*RNU )
066 = GO

RKN = 022 * AREA / RL
RKT = OB6 * AREA /RL

ENDIF

CX

CX

C

C CALCULATE RKINT MATRIX

C

CI=DCOS( PHIAV )

SI=DSIN( PHIAV )

C2:DCOS( PHIAV - PI/2. )

S2:DSIN( PHIAV - PI/2. )

IF(IDUMP.LT.3) GO TO 666

WRITE(6,1001) CI,C2,$I,$2

1001 FORMAT(IOX,'CI =',E15.7,5X,'C2 = ',E15.7,/,

1 IOX,'S1 = ',E15.7,5X,'S2 = ',E15.7,/)
666 CONTINUE

CY NEW

RKINT(1,1)= RKN*CI**2 + RKT'C2**2

RKINT(1 2)= RKN*CI*S1 + RKT*C2*S2

RKINT(1 3)= -RKN*CI=*2 - RKT*C2**2

RKINT(1 4)= -RKN*CI=S1 - RKT*C2*S2
RKINT(2 2)= RKN*SI**2 + RKT*S2**2

RKINT(2 3)= -RKN*CI*SI - RKT*C2*S2

RKINT(2 4)= -RKN*SI**2 - RKT*S2**2

RKINT(3 3)= RKN*CI**2 + RKT*C2**2

RKINT(3 4)= RKN*CI*S1 + RKT*C2*S2

RKINT(4 4)= RKN*S1**2 + RKT*S2**2
CY OLD

CY RKINT(1,1) = RKN*CI**2 + RKT*SI**2

CY RKINT(1,2) = -RKN*CI*S1 + RKT*CI*S1

CY RKINT(1,3) = -RKN*CI**2 - RKT*SI**2

CY RKINT(1,4) = RKN*CI*SI - RKT*CI*S1
CY RKINT(2,2) = RKN*SI**2 + RKT*CI**2

CY RKINT(2,3) = RKN*CI*S1 - RKT*CI*S1

CY RKINT(2,4) = -RKN*SI**2 - RKT*CI**2

CY RKINT(3,3) = RKN*CI**2 + RKT*SI**2

CY RKINT(3,4) = -RKN*CI*Sl + RKT*CI*SI

CY RKINT(4,4) = RKN*SI**2 + RKT*CI**2
CY

DO 99 d=1,4
dl=d+l

DO 99 I=d1,4

99 RKINT(I,J)=RKINT(J,I)

IF(IDUMP.LT.3) GO TO 667

WRITE(6,1002)

1002 FORMAT(IOX,'THE RKINT MATRIX IS',//)

DO 44 I=i,4

WRITE(B,1003) (RKINT(I,d),d=I,4)

1003 FORMAT(4(SX,E15.7))
44 CONTINUE

667 CONTINUE

RETURN
END

C

C

C SUBROUTINE ASEMINT

C

C THIS ROUTINE ASSEMBLES THE INTERFACE ELEMENTS

C

C

SUBROUTINE ASEMINT(AK,RKINT,NPE,NICON,NDOFPN)

IMPLICIT REAL*B(A-H,O-Z)

REAL*B AK(2400,BOO),RKINT(4,4)
DIMENSION NICON(2)

C .................... > FIRST THE ROWS

DO 10 JJ = 1, NPE
NROW = (NICON(_J) - 1 )*NDOFPN

DO 10 d = 1, NDOFPN
NROW = NROW + 1

I = ( dd-1 )*NDOFPN + d



C.................... > THENTHECOLUMNS
DO10KK= 1, NPE
NCOLB= (NICON(KK)- 1 )*NDOFPN
DO10K = 1, NDOFPN
L = ( KK-1)*NDOFPN+ K
NCOL= NCOLB+ K + 1 - NROW

C.................... > DONOTSTOREBELOWDIAGONAL
IF ( NCOL .LE. 0 ) GO TO 10

AK(NROW,NCOL)=AK(NROW,NCOL)+RKINT(I,L)

10 CONTINUE

RETURN

END

C

C

C SUBROUTINE FGLOB
C

C THIS SUBROUTINE CALCULATES THE GLOBAL FORCE MATRIX
C

C

SUBROUTINE FGLOB(FGL,FG,NTOT,S)

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 FEL(G),T(1500),FGL(2400),S(1500,4),A1(1200),A2(1200),

1 B(3,G),FG(2400),KGS(2400.600),Q(2400),FINT(4),DN(500),
2 DT(500)

INTEGER NODE(1500,3),NDOF(t500),MATSET(1500),MTYPE(1500)
COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

I IEQUIT,ITEMAX,ITEMP,IINT

COMMON/DISPHIS/DELTAQ(2400),WORKN(500),WORKT(500),FSEPN(500),

I FSEPT(500)

COMMON/AREA1/B

COMMON/AREA2/NODE,NDOF
COMMON/AREA4/Q

COMMDN/AREA5/T,MATSET,MTYPE

COMMON/AREAG/A1,A2

COMMDN/AREA7/NSTE,INCR,ITER

COMMON/LOAD/TIMV(I,IOOO),RV(1,1OOO),INODE(IOO),ICURVE(IO0),

1 DINC(IOOO),DPMINC(IOOO),DMULT(I,ICX:)O)
CDMMON/STIF/KGS

COMMON/BANDED/MAXBW

CX COMMON/INTFAC/NINTI,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP,ITGPL(IO,2),ITCON(500,2),

i SIGMAX(IO),DELTAN(IO),DELTAT(IO),ALPH(IO),

2 ETA(IO),DBFAC(IO),DN,DT,INTDF(5OO),INTSP(500)

3 .RMU(IO),DISPN(5OO),DISPT(5OO),TNRATIO(500),

4 XRHO(500), SIGNN(500), TAUNT(500), FN(500), FT (500)

COMMON/MODPARA/RMPI(IO),RMP2(IO),RMP3(IO),RMP4(IO),RMP5(IO),

1 RMP6(IO),RMP?(IO),RMP8(IO),RMP9(IO),RMPIO(IO)
NTOT=2*NN

DO 8888 I=I,NEL

CALL SHAPE(I,IDUMP,AREA)
DO 33 L=1,6

FEL(L)=O.

DO 33 K=1,3

33 FEL(L)=FEL(L)+S(I,K)*B(K,L)

DO 34 L=1,6
34 FEL(L)=FEL(L)*AREA*T(I)

DO 55 K=1,3

N2=NODE(I,K)*2-1
II=2*(K-I)+I

FG(N2)=FG(N2)-FEL(II)

55 FG(N2+I)=FG(N2+I)-FEL(II+I)
8888 CONTINUE

IF(IDUMP.LT.3) GO TO 4935

WRITE(6,6009)

6009 FORMAT(//25X,'FG IS',//)

DO 999 I=I,NTOT

WRITE(G,6010) FG(I)

6010 FORMAT(15X,E16.7)
999 CONTINUE

4935 CONTINUE

IF(IINT.EQ.O) GO TO 9199
C

c INCLUDE FORCES CAUSED BY
C

PI : 3.141592654

CX NINEL=NINT2-NINTI+I

CX II=NINT1

CX I2=II+NINEL

INTERFACE ELEMENTS



CX DO 4544 I:I,NINEL
CX

CX

CX

CX

CX

DO 4600 d = I, NIFGP

DO 4544 I = ITGPL(d,I), ITGPL(d,2)

! LOOP OVER GROUPS

! LOOP OVER ELEMENTS

IF ( I .EQ. ITGPL(d,I) ) THEN

ITFLAG = I

ELSE IF ( I .EQ. ITGPL(J,2) ) THEN

ITFLAG = 2

FORCE CALCULATION ELEMENT

ELSE IF ( ITGPL(J,I) .EO. ITGPL(d,2) ) THEN

ITFLAG = 3

ELSE

ITFLAG = 0

ENDIF

C

11 : ITCON(I,I)

I2 = ITCON(I,2)

CX

IF ( ITFLAG .EQ. 3 ) GO TO 711

I IMIX = I - I

I IPIX = I + I

IIMI = ITCON(IIMiX,I)

IIPI = ITCON(IIPIX,I)
C

C CALCULATE INTERFACIAL NORMAL ANGLE, PHI
C

IF (A2(IIMI) .EQ. A2(I1) ) THEN t MODIFIED FOR 90 DEG.

PHIl = PI / 2.0

ELSE

PHII=DATAN((AI(I1)-AI(I1M1))/(A2(I1M1)-A2(I1)))
ENDIF

IF ( A2(I1) .EQ. A2(IIP1) ) THEN ! MODIFIED FOR 90 DEG.

PHI2 = PI / 2.0

ELSE

PHI2=DATAN( (A I ( I 1P1 )-AI ( I 1 ) )/(A2(I I )-A2( I IPI ) ) )

END I F

WIWI:(AI(I 1 )-AI(I 1M1))*'2 +

1 (A2( I 1MI )-A2(I 1 ) )*'2

W2W2=(AI(I IPl )-AI (I I ))*,2 +

1 (A2(I 1 )-A2(I 1P1 ) )*'2

WI : SQRT(WIW1)

W2 = SQRT(W2W2)

C

C ACCOUNT FOR FIRST AND LAST ELEMENT

C

CX IF(I.GT.1) GO TO 334

CX IF(PHI2.LT..O01) GO TO 443

CX PHI 1:3. 14159265-PHI2

CX GO TO 3314
CX 443 PHI I=PHI2

CX 3314 Wl=O.

CX 334 CONTINUE

CX IF(I.LT.NINEL) GO TO 335

CX IF(PHII.LT..OOI) GO TO 444

CXCX PHI2=-PHI I

CX PHI2 = PHIl

CX GO TO 3334

CX 444 PHI2=PHII

CX 3334 W2=O.

CX 335 CONTINUE
CX

711 CONTINUE

IF ( ITFLAG .EQ. I )THEN

PHI I = PHI2

Wl = 0.0

ELSE IF ( ITFLAG .EQ. 2 ) THEN
PHI2 = PHIl

W2 = 0.0

CX FORCE CALCULATION ELEMENT

CX

ELSE IF ( ITFLAG .EQ. 3 ) THEN

Wl = 1 .0

W2 = 1.O

PHIl = PI / 2.0

PHI2 = PI / 2.0

CX



CX

CX

CY
CY

CY
CX
C
C

CX
C.m**

C

CX

CX

C

ENDIF

NIX=2*I1-1

NIY=NIX+I

N2X=2*I2-1

N2Y=N2X+_

PHIAV=(PHII+PHI2)/2.

UN=(Q(N2X)-Q(NIX))*OCOS(PHIAV)+(Q(N2Y)-Q(NIY))*OSIN(PHIAV)

UT=-(Q(N2X)-Q(NiX))*DSIN(PHIAV)+(Q(N2Y)-Q(NIY))*DCOS(PHIAV)

THETAI = PHIAV - ( PI / 2.0 )

UN = -(Q(N2X)-Q(NIX))*DSIN(THETAI) +

1 (Q(N2Y)-Q(NJY))*DCOS(THETAI)

UT = (Q(N2X)-Q(NIX))*DCOS(THETAI) +

I (Q(N2Y)-Q(NIY))*DSIN(THETAI)

ASSIGN VARIABLES FOR KACHANOV'S MODEL

EO = SIGMAX(d)

RNU = DELTAN(J)

GO = DELTAT(d)

ESPCRIT = ALPH(J)

RLAMBDA = ETA(d)

RL = DBFAC(J)

RBETA = RMU(d)

C CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS

EO = EO / ( 1.0 - (RNU**2))

RNU = RNU / ( 1.0 - RNU )

NEEDLEMAN OR TVERGAARD

UND = UN / DELTAN(d)

UTD = UT / DELTAT(d)

C ........................................

C KACHANOV

C

UND : UN / RL

UTD = UT / RL

C

C

CX

IF ( ITFLAG .EQ. 3 ) GO TO 713

DUX = DELTAQ(N2X) - DELTAQ(NIX)

DUY = DELTAQ(N2Y) - DELTAQ(NiY)

CY

CY DUN = DUX * DCOS(PHIAV) + DUY * DSIN(PHIAV)

CY DUT= -DUX * DSIN(PHIAV) + DUY * OCOS(PHIAV)

CY

DUN = -OUX * DSIN(THETAI) + DUY * DCOS(THETAI)

DUT= DUX * DCOS(THETAI) + DUY * DSIN(THETAI)

CY

OUND = DUN / RL

DUTO = OUT / RL

C

IF(IDUMP.LT.3) GO TO 6034

WRITE(6,1000) I1,PHI1,PHI2,WI,W2,UN,UT,UND,UTD

I000 FORMAT(IOX,'IN FGLOB - II = ",I3,/,IOX,'PHII = ',E15.7,

1 IX,'PHI2 = ',E15.7,/,lOX,'W1 = ',E15.7,

2 IX,'W2 = ",E15.7,/,lOX,'UN = ',E15.7,

3 IX,'UT = ',EIS.7,/,IOX,'UND = ',E15.7,

4 1X,'UTD = ',E15.7,/)

6034 CONTINUE

CX
cx WRITE(B,3000) II,UND,UTD

cx 3000 FORMAT(IOX,'IN FGLOB - I1 = ',I3,/,15X,'UND = '
cx 1 'UTD = ',E15.7,/)

CX

C

C CALCULATE NORMAL AND TANGENTIAL FORCE COMPONENTS

C FN,FT

C
• ********************** KACHANOV'S MODEL

CX

C FORCE CALCULATIONS

C

,EIS.7,5X,



C

C AREA ....................... TRUSS ELEMENT CROSS SECTIONAL AREA

C RL ......................... THICKNESS OF INTERFACE (INP.)

C EO ......................... YOUNG'S MODULUS OF INTERFACE (INP.)

C GO ......................... SHEAR MODULUS OF INTERFACE (INP.)

C RNU ........................ POISSION'S RATIO OF INTERFACE (INP.)

C ESPCRIT .................... CRITICAL TENSILE STRAIN (INP.)

C RLAMBDA .................... DAMAGE GROWTH PROPORTIONAL CONST. (INP.)

C RAREA ...................... AREA OF DAMAGED ZONE

C RLENGTH .................... CRACK LENGTH

C RBETA ...................... RLENGTH / RL (INP.)
C

C

CX

C

CX

CX

C

c

c

C

C

C

CX

CXX

CXX

CXX

CXX

CXX

CXX

CXX

CALCULATE PRINCIPLE NORMALIZED DISPLACEMENTS

RLSO = ( UND / 2.0)*'2 + ( UTD / 2.0)*'2

RLAM : SORT( RLSO )

UMI : UND / 2.0 + RLAM

U_2 : UND / 2.0 - RLAM

U_AX = D_AXI( UMI , UM2 )

AREA = ( Wl + W2 ) / 2.0 * T(1)
RAREA = AREA / T(1) * RL

IF ( UMAX .LE. ESPCRIT ) THEN ! INTERFACE INTACT

IF ( UND .EQ. 0.0 .AND. UTD .EQ. 0.0 ) THEN

022 = EO / ( 1.0 - RNU*RNU )
066 = GO

FN(I) : 0.0

FT(1) = 0.0

ELSE

IF ( UND .LT. 0.0 ) THEN ! MODIFY NORMALIZED

UNDC = 0.0 ! DISPLACEMENTS FOR

UTDC = UTD ! COMPRESSIVE LOADS
ELSE

UNDC : UND

UTDC : UTD

ENDIF

TRANSFORM NORMALIZED DISPLACEMENTS TO PRINCIPLE DAMAGE

COORDINATES (1,2)

P4 : PI / 4.0

P42 = P4 * 2.0

DC2 = DCOS(P4) * DCOS(P4)

UNDPD = -UTD*DSIN(P4) + UND*DCOS(P4)
UTDPD = UTD*DCOS(P4) + UND*DSIN(P4)

UNDPD = UNDC * DC2 - ( 0.5 * UTDC ) * DSIN(P42)

UTDPD = 0.5 * UNDC * DSIN(P42) + ( 0.5 * UTDC ) * DCOS(P42)

DUNDP = DUND * DC2 - ( 0.5 * DUTD ) * DSIN(P42)
OUTDP = 0.5 * DUND * DSIN(P42) + ( 0.5 * DUTD ) * DCOS(P42)

DETERMINE EFFECTIVE PROPERTIES

CXX MODIFICATION TO USE STRESS DEPENDENT DAMAGE

GROWTH LAW

RI = RLAMBDA * DABS(UNDPD)

RI = RLAMBOA * DABS(UTDC)

RLENGTH = RBETA * RL

RHO = RI * RLENGTH**2 / RAREA

RHO = D_AXI( RHO, XRHO(I) )

XRHO(I) = RHO

RHO = XRHO(I)

! RLANBDA * UNDPD
! RLAMBDA * UTDC

! RBETA * RL

E1 = EO ! EO DEPENDS ON PLANE STRESS

E2 = EO / ( 1.0 + 2.0*PI*RHO ) ! OR PLANE STRAIN CONDITIONS

RNU12 = RNU

RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)

GI2 : GO / ( 1.0 + 2.0*PI*RHO*(GO/EO) )

FORM REDUCED STIFFNESS MATRIX

Qll = E1 / ( 1.0 - RNU12*RNU21 )

Q12 = RNU21 * 011

022 = E2 / ( 1.0 - RNU12*RNU21 )
Q66 = G12



CXX

CXX

CXX

C

C

C

CXX

CXX

CXX

C
C

C

C

C

C

C
C

CX

CX
CX

CX

CX

CX

CX

CX
CX

CX

CX

CY

BEGIN CXX MODIFICATIONS

CALCULATE PRINCIPAL STRESSES FOR DAMGE GROWTH LAW

SIGNN(I) = SIGNN(I) + Q22 * DUNDP

TAUNT(I) = TAUNT(I) + Q66 * DUTDP

SIGSIG = (SIGNN(I) / 2.0 I*'2 + (TAUNT(I) / 2.0 )*'2

RSIG = SQRT(SIGSIG)

SIGMI = SIGNN(I)/2.0 + RSIG

SIGM2 = SIGNN(1)/2.0 - RSIG

SIGPRIN = DMAXI(SIGMI,SIGM2)

TAUMAX = RSIG

CALCULATE THE VALUE OF RHO (MICRO CRACK DAMAGE)

RI = RLAMBDA * DABS(SIGPRIN)

RLENGTH = RBETA * RL

RHO : RI * RLENGTH**2 / RAREA

XRHO(I) = DMAXI( RHO, XRHO(I) )

RECALCULATE EFFECTIVE PROPERTIES WITH UPDATED RHO

El = EO ! EO DEPENDS ON PLANE STRESS

E2 = EO / ( 1.0 + 2.0*PI*RHO ) ! OR PLANE STRAIN CONDITIONS

RNUI2 = RNU

RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)

GI2 : GO / ( 1.0 + 2.0*PI*RHO*(GO/EO) )

FORM REDUCED STIFFNESS MATRIX

QI1 = E1 / ( 1.0 - RNU12*RNU21 )

QI2 = RNU21 * Qll

Q22 = E2 / ( 1.0 - RNU12*RNU21 )
Q66 : G12

END MODIFICATION FOR STRESS DEPENDENT DAMAGE GROWTH

TRANSFORM SELECTED STIFFNESS COMPONENTS TO INTERFACIAL COORD.

(-45 DEG)

PN4 = -PI / 4.0

QBARII = Q11*DCOS(PN4)**4

1 + 2.0*( Q12 + 2.0*QG6 )*DSIN(PN4)**2*DCOS(PN4)**2

2 + Q22*DSIN(PN4)**4

QBAR12 = ( Qll + Q22 - 4.0*066 )*DSIN(PN4)**2
1 *DCDS(PN4)**2

2 + Q12"( DSIN(PN4)**4 + DCOS(PN4)**4 )

QBAR22 = QI1*DSIN(PN4)**4

1 + 2.0*( Q12 + 2.0*QGG )*DSIN(PN4)**2*DCOS(PN4)**2
2 + Q22*DCOS(PN4)**4

QBARIG = ( Qll - Q12 - 2.0*QGG )*DSIN(PN4)*DCOS(PN4)**3

1 + ( Q12 - Q22 + 2.0"Q66 )*DSIN(PN4)**3*DCOS(PN4)

QBAR2G = ( QII - QI2 - 2.0*QGG )*DSIN(PN4)**3*DCDS(PN4)
1 + ( Q12 - Q22 + 2.0"Q66 )*DSIN(PN4)*DCOS(PN4)**3

QBARGG = ( Qll + Q22

1 - 2.0*(Q12+QGG))*DSIN(PN4)**2*DCOS(PN4)**2

2 + Q66"( DSIN(PN4)**4 + DCOS(PN4)**4 )

INVERT TRANSFORMED REDUCED STIFFNESS MATRIX TO DETERMINE

S22 AND SGG OF MATERIAL, THEN TAKE RECIPROCAL TO GET

ED22 AND GO12

S22 = ( QBARll * QBAR66 - QBAR1G**2 ) /
( QBAR11 * QBAR22 * QBARGG - QBAR12**2 * QBAR66 -

QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -

QBAR16**2 * QBAR22 )
S66 = ( QBAR11 * OBAR22 - QBAR12**2 ) /

( QBARll * QBAR22 * QBARGG - QBAR12**2 * QBARG6 -

QBAR11 * QBAR2G**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -

QBARIG**2 * QBAR22 )
ED22 = 1.0 / $22

GDG6 = 1.0 / SGG

FN(I) = FN(I) - QBAR22 * AREA * ( DUND )

FT(I) = FT(I) - 2.0 * QBARGG * AREA * ( 0.5 * DUTD )

ADJUST NORMAL FORCE FOR COMPRESSIVE LOADS
IF ( UND .LT. 0.0 ) THEN

FN(I) = FN(I) -10.0E2 * QBAR22 * ( UND )

FN(I) = FN(I) - QBAR22 * AREA * ( DUND )



CY

CY

CX

CX

CYX

ENDIF

CHECK FOR PRIOR FAILURE

IF (INTDF(I) .GT. 0 ) THEN

FT(I) = 0.0

IF ( UND .GT. 0.0 ) THEN

FN(1) = 0.0

ENDIF

ENDIF

WRITE(6,4567) ED22,GD66

CYX 4567 FORMAT(10X,'ED22= ',E15.6,5X,'GD66= ',E15.6)
CX

CX

C

ENDIF

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C CALCULATE INCREMENT OF WORK OF SEPARATION

C

IF ( UND .LT. 0.0 ) THEN

DWORKN : 0.0

ELSE

DWORKN : DABS(FN(I)) * DABS(DUN)

ENDIF

DWORKT : DABS(FT(I)) * DABS(DUT)

IF (INTDF(I) .GT. 0 ) THEN

DWORKN : 0.0

DWORKT : 0.0

ENDIF

WORKN(1) : WORKN(1) + DWORKN

WORKT(I) : WORKT(1) + DWORKT

C

ELSE ! INTERFACE SEPARATED

C

IF ( UND .LT. 0.0 ) THEN

Q22 : EO / ( 1.0 - RNU*RNU )

CY FN(I) : FN(1) - IO.OE2 * Q22 * AREA * ( DUND )

FN(I) : FN(I) -Q22 * AREA • ( DUND )

CY

FT(1) : 0.0

ELSE

FN(I) : 0.0

FT(I) = 0.0

ENDIF

DWORKN : 0.0

DWORKT = 0.0

WORKN(1) = WORKN(I) + DWORKN

WORKT(I) = WORKT(I) + DWORKT

ENDIF

CX

CX

• ************************ END KACHANOV'S MODEL ***********************

CX

713 CONTINUE
CX FORCE CALCULATION ELEMENT

CX

IF ( ITFLAG .EQ. 3 ) THEN

Q22 = EO / ( 1.0 - RNU*RNU )

Q66 = GO

FN(I) = -Q22 * AREA * ( UND )

FT(I) = -2.0 * O6G * AREA * ( 0.5 * UTD )
ENDIF

CX

CX

CY

CY

CY

CY

CY

CY

CY

CY

OLD

FINT(1)=FN(1)*DCOS(PHIAV)-FT(I)*DSIN(PHIAV)

FINT(2)=FN(1)*DSIN(PHIAV)+FT(I)*DCOS(PHIAV)

FINT(3)=-FN(I)*DCOS(PHIAV)+FT(I)*DSIN(PHIAV)

FINT(4)=-FN(1)*DSIN(PHIAV)-FT(1)*DCOS(PHIAV)

NEW

RTHETAI : -1.0 * THETAI

FINT(1) : -FN(1)*DSIN(RTHETAI) + FT(I)*DCOS(RTHETAI)

FINT(2) = FN(1)*DCOS(RTHETAI) + FT(I)*DSIN(RTHETAI)

FINT(3) : -FINT(1)

FINT(4) = -FINT(2)



IF(IDUMP.LT.3) GO TO 3398

WRITE(6,2007) (FINT(K),K=I,4)
2C07 FORMAT(IOX,'FINT = ',4E15.7,/)

3398 CONTINUE

FG(NIX)=FG(N1X)-FINT(I)

FG(NIY)=FG(N1Y)-FINT(2)

FG(N2X)=FG(N2X)-FINT(3)
FG(N2Y)=FG(N2Y)-FINT(4)

CX I1=I1+1

CX I2=I2+1
4544 CONTINUE

4600 CONTINUE

9199 CONTINUE

DO 7777 J=I,NTOT
7777 FG(J)=FG(J)+FGL(J)

C

C APPLY DISPLACEMENT BOUNDARY CONDITIONS

C

IF(IDUMP.LT.4) GO TO 521

WRITE(6,5003) ITER,NDBC,MAXBW

5003 FORMAT(SX,'ITER=',I3,' NDBC=',I3,' MAXBW=',I3,/)

WRITE(G,5004) (DINC(I),I=I,NDBC)

5004 FORMAT(SX,'DINC = ',3E15.7)

WRITE(B,5005) (NDOF(I),I=I,NDBC)

5005 FORMAT(SX,'NDOF = ',I015)

WRITE(6,?013)

7013 FORMAT(//,2OX,'GLOBAL LINEAR STIFFNESS MATRIX',//)

WRITE(B,7040) ((KGS(II,Jd),dd=I,MAXBW),II=I,NTOT)

7040 FORMAT(4(SX,E15.7) )
521 CONTINUE

IF(NDBC.EQ.O) GO TO 44

IF(ITER.GT.I) GO TO 43

DO 9999 K:I,NDBC

C

C SUBTRACT DISPLACEMENTS ABOVE DIAGONAL

C

JJ=NDOF(K)

II=1

97 IF(dd.GT.MAXBW) GO TO 95

CX IF ( IDUMP .LT. 3 ) GO TO 2345

CX WRITE(6,2344) FG(II),KGS(II,JJ),DPMINC(K)

CX 2344 FORMAT(/,'A-BEFORE: FG(II)= ',E14.7,5X,'KGS(II,dJ) = ',E14.7,

CX 1 5X,'DPMINC(K)= ',E14.7,/)

CX 2345 CONTINUE
FG(II) = FG(II) - KGS(II,JG) * DPMINC(K)

CX IF ( IDUMP .LT. 3 ) GO TO 2347

CX WRITE(6,2346) FG(II),KGS(II,dd),DPMINC(K)

CX 2346 FORMAT(/,'A-AFTER: FG(II)= ',EI4.7,SX,'KGS(II,dd) = ',E14.7,

CX 1 5X,'DPMINC(K)= ',El4.?,/)
CX 2347 CONTINUE

95 II=II+l

98 dd=dd-I

IF(dJ.GT.I) GO TO 97
C

C SUBTRACT DISPLACEMENTS BELOW DIAGONAL

C

JJ=NDOF(K)

II=NDOF(K)+I

LL=2

CX IF ( IDUMP .LT. 3 ) GO TO 3345

CX WRITE(G,3344) FG(II),KGS(Jd,LL),DPMINC(K)

CX 3344 FORMAT(/,'B-BEFORE: FG(II)= ',EI4.?,SX,'KGS(II,dJ) = ',E14.7,

CX 1 5X,'DPMINC(K)= ',E14.7,/)

CX 3345 CONTINUE

96 FG(II) = FG(II) - KGS(JJ,LL) * DPMINC(K)

CX IF ( IDUMP .LT. 3 ) GO TO 3347
CX WRITE(6,3346) FG(II),KGS(JJ,LL),DPMINC(K)

CX 3346 FORMAT(/,'B-AFTER: FG(II)= ',EI4.7,SX,'KGS(II,Jd) = ',E14.7,

CX i 5X,'DPMINC(K)= ',E14.7,/)

CX 3347 CONTINUE

II=II+1

LL=LL+I

IF(II.GT.NTOT) GO TO 9999

IF(LL.LE.MAXBW) GO TO 96

9999 CONTINUE

DO 9994 K=I,NOBC

Jd:NDOF(K)

9994 FG(JJ)=DPMINC(K)

GO TO 44

43 DO 9998 K=I,NDBC



9998 FG(NDOF(K))=O.
44 CONTINUE

IF(IDUMP.LT.3) GO TO GGGG

IRIGHT=I

IF(IRIGHT.NE.I) GO TO GGGG

WRITE(G,2014)
2014 FORMAT(//,20X,'RIGHT HAND SIDE MATRIX',//)

WRITE(6,20i5) (FG(I),I=I,NTOT)

2015 FORMAT(30X,E15.7)

6666 CONTINUE

RETURN

END

C

C

C SUBROUTINE BANDWD

C

C THIS ROUTINE DETERMINES THE BAND WIDTH OF THE STIFFNESS

C MATRIX

C

C

SUBROUTINE BANWD(MODEL,NELEMS,NCON,NOOFPN,MAXBW,IDUMP)

DIMENSION NCON(1500,3)

MAXBW=O

DO 10 d=I,NELEMS

KA:NCON(J,I)

KB=NCON(J,2)

KC=NCON(J,3)

IF(MODEL.LE.3) GOTO 2

KAA=NCON(J,4)

KBB=NCON(J,5)

KCC=NCON(d,6)

2 KAMB=IABS(KA-KB)

KAMC=IABS(KA-KC)

KBMC=IABS(KB-KC)

IF(MODEL.LE.3) GOTO 3

KAMAA=IABS(KA-KAA)

KAMBB=IABS(KA-KBB)

KAMCC=IABS(KA-KCC)

KBMAA=IABS(KB-KAA)

KBMBB=IABS(KB-KBB)

KBMCC=IABS(KB-KCC)

KCMAA=IABS(KC-KAA)

KCMBB=IABS(KC-KBB)

KCMCC=IABS(KC-KCC)

3 ICK=(MAXO(KAMB,KAMC,KBMC)÷I)'NDOFPN

IF(MDDEL.LT.4) GO TO 1430

ICK=(MAXO(KAMB,KAMC,KBMC,KAMAA,KAMBB,KAMCC,KBMAA,

* KBMBB,KBMCC,KCMAA,KCMBB,KCMCC)+I)*NDOFPN
1430 CONTINUE

IF(MAXBW.LT.ICK) MAXBW=ICK

10 CONTINUE
IF(IDUMP.LT.2) GOTO 15

WRITE(G,20) MAXBW

20 FORMAT(/10X,'THE MAXIMUM SEMI-BANDWIDTH IS',I3)

15 CONTINUE

RETURN

END

C

C

C SUBROUTINE BANDSOL

C

C
C

C

C

C

C

C
C

C

C

C
C

C

C
C

SYMMETRIC BAND MATRIX EQUATION SOLVER. GAUSS-DOOLITTLE

METHOD SOLVES EQUATIONS (AK)(X):R

AK : SYMMETRIC BANDED COEFFICIENT MATRIX STORED IN

COMPACTED FORM

R : RIGHT HAND SIDE MATRIX

NEQ : NUMBER OF EQUATIONS BEING SOLVED

IBAND : SEMI-BANDWIDTH OF EQUATIONS BEING SOLVED

MAXEQ = NO. OF ROWS FOR WHICH AK AND R ARE DIMENSIONED

(MAX EQUATIONS)

MAXBND : NO. OF COLUMNS FOR WHICH AK IS DIMENSIONED

(MAX BANDWIDTH)

KKK : I TRIANGULARIZES THE SYMMETRIC, BANDED MATRIX AK

AND OVERWRITES IT INTO AK (HENCE, AK IS

DESTROYED AND IS REPLACED BY ITS TRIANGULARIZED



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FORM).NOTETHATR IS NOTNEEDED.
KKK= 2 OBTAINSSOLUTIONTO(AK)(X)=RFORA PARTICULAR

RIGHT-HAND-SIDER (ASSUMESTHATTRIANGULARIZED
FORMOFAKIS STOREDIN AK). SOLUTIONIS
RETURNEDIN R.

KKK= 3 PERFORMS BOTH FORWARD ELIMINATION AND BACK

SUBSTITUTION AT THE SAME TIME

NOTE---FOR SOLUTION OF SEVERAL SETS OF EQUATIONS WITH SAME

LEFT SIDE (AK) BUT DIFFERENT RIGHT SIDES (R), THE

FIRST SOLUTION SHOULD BE OBTAINED WITH KKK=3 (OR

KKK=I AND KKK=2). SUBSEQUENT SOLUTIONS WITH NEW

RIGHT-HAND-SIDES REQUIRES ONLY CALLING BANSOL WITH

KKK=2 (TRIANGULARIZED AK AND NEW R NEEDED).

WARNING--THIS PROGRAMS ASSUMES THAT AK IS POSITIVE

DEFINITE AND DIAGONALLY DOMINANT. NO PIVOTING OR

CHECKING FOR ZERO DIAGONAL ELEMENTS IS PERFORMED.

SEE W.E. HAISLER IF YOU HAVE PROBLEMS

SUBROUTINE BANSOL(AK,R,NEQ,IBAND,MAXEQ,MAXBND,KKK)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION AK(MAXEQ,MAXBND),R(MAXEQ)

NRS = NEQ - I

NR = NEQ

GO TO (I00,200, I00), KKK

C PERFORM TRIANGULARIZATION OF AK

100 DO 120 N=I,NRS
M = N - 1

MR = MINO(IBAND,NR-M)

PIVOT = AK(N,I)

DO i20 L:2,MR

CP : AK(N,L)/PIVOT

I : M + L

d = 0

DO II0 K:L,MR

d = d + 1

110 AK(I,J) = AK(I,J) - CP*AK(N,K)

120 AK(N,L) = CP

IF (KKK.EQ.1) RETURN

C FORWARD ELIMINATION OF R

200 DO 220 N=I,NRS

M = N - 1

MR = MINO(IBAND,NR-M)
CP = R(N)

R(N) = CP/AK(N, 1)

DO 220 L=2,MR
I = M + L

220 R(I) : R(1) - AK(N,L)*CP

C BACKWARD SUBSTITUTION TO OBTAIN SOLUTION

R(NR) = R(NR)/AK(NR,i)

DO 320 I:I,NRS

N : NR - I

M = N - 1

MR = MINO( IBAND, NR-M)

DO 320 K=2,MR
L = M + K

320 R(N) = R(N) - AK(N,K)*R(L)
400 RETURN

END

C

C

C SUBROUTINE ASEMBL
C

C

SUBROUTINE ASEMBL(AK,BK,NPE,NNCON,NDOFPN,II)

IMPLICIT REAL*8(A-H, O-Z)

REAL*8 AK(2400,600), BK(6,6)
DIMENSION NNCON(1500,3)

C .................... > FIRST THE ROWS

DO 10 dd = 1. NPE

NROW = (NNCON(II,dd) - 1 )*NDOFPN

DO 10 d = 1, NDOFPN
NROW = NROW + 1

I = ( dd-1 )*NDOFPN + d

C .................... > THEN THE COLUMNS

DO 10 KK = 1, NPE

NCOLB = (NNCON(II,KK) - 1 )*NDOFPN
DO 10 K = 1, NDOFPN

L = ( KK-1 )*NDOFPN + K



NCOL = NCOLB + K + I - NROW

C .................... > DO NOT STORE BELOW DIAGONAL

IF ( NCOL .LE. 0 ) GO TO 10

AK(NROW,NCOL)=AK(NROW,NCOL)+BK(I,L)

I0 CONTINUE

RETURN

END

C

C

C SUBROUTINE STRESS

C

C THIS SUBROUTINE CALCULATES STRESSES AND STRAINS

C

C

SUBROUTINE STRESS(NODE,DS,DE,DELTAQ)

IMPLICIT REAL*B(A-H,O-Z)

REAL*B B(3,6),DET(1500,3),DST(1500,4),DELTAQ(2400)

REAL*8 DE(1500,3),DS(1500,4),C(3,3),T(1500),Al(1200),A2(1200)

COMMON/ELASI/S(1500,4),E(1500,3).EO(1500,3),DSTRAN(3),
I DSTRES(4)

COMMON/AREAT/NSTE,INCR,ITER

COMMON/PLASI/ALPHA(4,1500),EPBAR(1500),SIGBAR(1500),

1 IPLAS(1500),EPSP(1500,4),DEPSPT(1500,4),

2 DEPSP(1500,4)

INTEGER NODE(1500,3),MATSET(1500),MTYPE(1500)

COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

1 IEQUIT,ITE_AX,ITEMP,IINT

COMMON/AREAI/B

COMMON/AREA5/T,_ATSET,_TYPE

COMMON/AREA6/AI,A2

COMMON/AREAIO/DST,DET

COMMON/HOMOG/SIGIAV,OEBARII

VOLUME:O.

SIGIAV:O.

DO 9999 I:I,NEL

C CALCULATE STRAINS

CALL SHAPE(I,IDUMP,AREA)

NI:NODE(I,I)

N2:NODE(I,2)

N3:NDDE(I,3)

QI=DELTAQ(2*NI-I)

Q2=DELTAQ(2*NI)

Q3:DELTAQ(2*N2-1)

Q4:DELTAQ(2*N2)

Q5:DELTAQ(2*N3-1)

QB:DELTAQ(2*N3)

DE(I,I):B(I,1)*QI+B(I,3)*Q3+B(1,5)*Q5

DE(I,2):B(2,2)*Q2+B(2,4)*Q4+B(2,6)*Q6

DE(I,3):B(3,1)*Qi+B(3,2)*Q2+B(3,3)*Q3+B(3,4)*Q4+B(3,5)*

1 Q5+B(3,6)*Q6

DO 93 d=1,3

E(I,U)=E(I,d) + DE(I,d)

93 DET(I,d)=DET(I,d)+DE(I,d)
IF(MTYPE(I).EQ.I) GO TO 451

IF(MTYPE(I).EQ.2) GO TO 452

IF(MTYPE(I).EQ.3) GO TO 453

IF(MTYPE(I).EQ.4) GO TO 454
WRITE(6,6003)

FORMAT(IOX,'MATERIAL TYPE NOT IN CURRENT LIBRARY',/)

450

6003

451

452

453

454

455

94

9999

STOP

CALL ELAS2D(I,C,DS,MATSET(I))
GO TO 455

CALL PLAS2D(I,C,DS,O,MATSET(I))
GO TO 455

CALL VPLAS2D(I,C,DS,O,MATSET(1))

GO TO 455

GO TO 450

CONTINUE

DO 94 d=1,4

EPSP(I,d)=EPSP(I,J)+DEPSP(I,J)

S(l,d)=S(l,d)+DS(l,d)

DEPSPT(I,U):DEPSPT(I,J)+DEPSP(I,d)

DST(I,d):DST(I,J)+DS(I,J)

VOLUME=VOLUME+AREA,T(1)

SIGIAV=SIGIAV+S(I,I)*AREA*T(I)

CONTINUE

SIGIAV=SIGIAV/VOLUME

RETURN



END

C

C

C SUBROUTINE PLAS2D
C

C

C THIS IS A CONSTITUTIVE PACKAGE FOR RATE INDEPENDENT

C CLASSICAL PLASTICITY...

C THIS PROGRAM DRIVES AN INCREMENTAL CONSTITUTIVE ROUTINE

C IN THE FORM DS=(C)DEC THIS ROUTINE USES RATE INDEPENDENT

C INCREMENTAL PLASTICITY THEORY

TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT

OF A 2-D MATERIAL POINT UNDER PLANE STRAIN CONDITIONS

SUBROUTINE PLAS2D(J,C,OS,IPC,MATNO)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION STRESS(4),STRAIN(3),SG(4),DDEPSP(4),

1 DFDS(6),DDFDS(6),DEPSE(3),DSG(4),SOLD(4),
2 EOLD(3)

DIMENSION C(3,3),DST(1500,4),DS(1500,4),DET(1500,3)
COMMON/ELAS1/S(1500,4),E(1500,3),EO(1500,3),DSTRAN(3),

1 DSTRES(4)

COMMON/ELAS2/EMl(4),E_2(4),VNU(4),GI2(4),Yl(4),Y2(4),Y(4),
I EM(4)

COMMON/PLAS1/ALPHA(4,1500),EPBAR(1500),SIGBAR(1500),

1 IPLAS(1500),EPSP(1500,4),DEPSPT(1500,4),
2 DEPSP(1500,4)

COMMON/PLAS2/SX(IO,4),EX(IO,4),EPX(IO,4),
I SP(IO,4),DEPSAL,BETA

COMMON/BB/NUNIAX(4),IDUMP2,ISUB

COMMON/AREAIO/DST,DET

COMMON/AREA7/NSTE,INCR,ITER

CX EMII=EMI(MATNO)

CX EMI2=E_2(MATNO)

CX VNUII2=VNU(MATNO)

CX VNUI21=VNUII2*EMI2/EMII

CX RGI2=GI2(MATNO)

CX YII=YI(MATNO)

CX YI2=Y2(MATNO)

E_I:EM(MATNO)

VNUI:VNU(MATNO)

YI:Y(MATNO)

DO 11 I=1,3

DEPSP(d,I)=O.

STRESS(1)=S(J,I)

STRAIN(I)=EO(J,I)

DSTRAN(I)=E(d,I)-EO(d,I)

Ii CONTINUE

DEPSP(d,4)=O.

STRESS(4)=S(d,4)

CI=EMI/(I.+VNUI)

C2:C1/(I.-2.*VNUI)

DII=C2*(1.-VNUI)
DI2=VNUI*C2

D44=C1/2.

DSG(I)=Dll*DSTRAN(1)+DI2*DSTRAN(2)
DSG(2)=D12*DSTRAN(1)+Dll*DSTRAN(2)

DSG(3)=D44*DSTRAN(3)

DSG(4)=D12*(DSTRAN(1)+DSTRAN(2))
DO 10 I=1,4

10 SG(I)=STRESS(I)+DSG(I)

F=.5*((SG(1)-ALPHA(1,d)-SG(2)+ALPHA(2,d))**2+(SG(2)-

1 ALPHA(2,d)-SG(4)+ALPHA(i,d))**2

2 +(SG(4)-ALPHA(4,d)-SG(1)+ALPHA(1,d))**2+6.*(SG(3)-

3 ALPHA(3,d))**2)-SIGBAR(d)**2
IF(DABS(F).LT.IO.O) F=O.O

IDUMP3=O

IF(IDUMP3.EQ.O) GO TO 6004

WRITE(6,G(X)O)

6000 FORMAT(' ',/,3X,'STRESSES TO PLAS2D ARE',3X,'STRAINS',3X,

1 'STRAIN INCREMENTS',//)

DO 6001 I=1,3
WRITE(6,6OO2)S(d,I),E(U,I),DSTRAN(I)

6002 FORMAT(' ',3X,3(E13.6,3X))
6001 CONTINUE

6004 CONTINUE

IDUMP4=O



6003

6005

2O

3O

2000

3OOO

3001

12

40

4020

IF(IOUMP4.EQ.O) GO TO 6005

WRITE(6,6003) SIGBAR(d),F

FORMAT(' ',/,3X,'SIGBAR=',EI3.6,3X,'F=',E13.6,/)

CONTINUE

IF(F) 20,30,40

IPLAS(d)=I
GO TO 2000

IPLAS(J)=2

DO 30(0 I=1,4

DSTRES(I)=DSG(I)

DS(d,I)=DSTRES(I)

STRESS(I)=STRESS(I)+DSTRES(I)

DO 3001 I=1,3

STRAIN(I):STRAIN(I)+DSTRAN(I)

EO(J,I)=E(d,I)

CONTINUE

C(1,1)=Dll

C(1,2)=D12

C(1,3)=0.0

C(2,1)=C(1,2)

C(2,2)=C(1,1)
C(2,3)=0.0

c(3,1)=o.o
C(3,2)=0.0

C(3,3)=D44
RETURN

CONTINUE

DO 4020 I=1,3
SOLD(I)=STRESS(I)

EOLD(I)=STRAIN(I)

SOLD(4)=STRESS(4)
IF(IPLAS(d).GT.1) GO TO 1000

SMAI=STRESS(1)-ALPHA(1,J)
SMA2=STRESS(2)-ALPHA(2,J)

SMA3=STRESS(3)-ALPHA(3,J)

SMA4=STRESS(4)-ALPHA(4,J)

A=2.*DSG(1)**2+2.*DSG(2)**2-2.*DSG(1)*DSG(2)

1 +6.*DSG(3)**2+2.*DSG(4)**2
2 -2.*DSG(2)*DSG(4)-2.*DSG(I)*DSG(4)

B=4.*SMAI*DSG(1)+4.*SMA2*DSG(2)+4.*SMA4*DSG(4)
1 -2.*SMA2*DSG(I)-2.*SMA4*DSG(1)

2 -2.*SMAI*DSG(2)-2.*SMA4*DSG(2)
3 -2.*SMAI*DSG(4)-2.*SMA2*DSG(4)

4 +12.*SMA3*DSG(3)

CC=2.*SMAI**2+2.*SMA2**2+2.*SMA4**2

1 -2.*SMAI*SMA2-2.*SMAI*SMA4
2 -2.*SMA2*SMA4+6.*SMA3**2

3 -2.*SIGBAR(d)**2

500

5O

1000

1001

ROOT=B**2-4.*A*CC

IF(ROOT.LE.O.O) ROOT=O.O

ZETA=(-B+DSQRT(ROOT))/2./A
DO 500 I=1,3

STRESS(I)=STRESS(I)+ZETA*DSG(1)

STRAIN(I)=STRAIN(I)+ZETA*DSTRAN(I)

STRESS(4)=STRESS(4)+ZETA*DSG(4)

DO 50 I=1,3

DSTRAN(I)=(I.-ZETA)*DSTRAN(I)
GO TO 1001

ZETA=O.

CONTINUE

IF(ISUB.NE.O) GO TO 3030

DE=(4./3.*(DSTRAN(1)**2+DSTRAN(2)**2+DSTRAN(1)*DSTRAN(2)
1 +DSTRAN(3)**2))**.5

M:DE/DEPSAL+.I

IF(M.EQ.O) M=I

DO 400 I=1,3

400 DSTRAN(I)=DSTRAN(I)/M
GO TO 3090

3030 M=I

3090 CONTINUE

NPSUB=I

IF(NPSUB.EQ.I) GO TO 3032

WRITE (6,3031) M

3031 FORMAT(' ',//,3X,'NO. OF SUBINCREMENTS =
3032 CONTINUE

DO 5000 NSUB=I,M
Id=l

1002

',I3,//)

IF(EPBAR(J).LE.(EPX(Id,MATNO)-.O000002)) GO TO 1010

IF(IJ.GT.NUNIAX(MATNO)) GO TO 1003

Id=Id+1



GOTO1002
1003WRITE(6,7001)
7001FORMAT(IOX,'STOP- EPBARIS TOOBIG')

WRITE(G,7019)MATNO,d,EPBAR(d)
7019 FORMAT(IOX,'MATERIAL NO. ',I3,

I 2X,'ELEMENT NO. ',I3,/,10X,

2 'EPBAR = ',E15.7,/)
STOP

1010 IF(IJ.EQ.I) Id=2

HPRIME=2./3.*(SP(IJ,MATNO)-SP(Id-I,MATNO))

1 /(EPX(IJ,MATNO)-EPX(IJ-1,MATNO))

DFDS(1)=2.*(STRESS(1)-ALPHA(1,J))-STRESS(2)+ALPHA(2,j)

I -STRESS(4)+ALPHA(4,J)

DFDS(2)=2.*(STRESS(2)-ALPHA(2,J))-STRESS(1)+ALPHA(1,d)
I -STRESS(4)+ALPHA(4,d)

DFDS(3)=2.*(STRESS(4)-ALPHA(4,J))-STRESS(1)+ALPHA(1,J)
I -STRESS(2)+ALPHA(2,d)

DFDS(4)=O.

DFDS(5)=O.

DFDS(6)=6.*(STRESS(3)-ALPHA(3,J))

DDFDS(1)=D11*DFDS(1)+D12*DFDS(2)+DI2*DFDS(3)

DDFDS(2)=D12*DFDS(1)+D11*DFDS(2)+DI2*DFDS(3)

DDFDS(3)=D12*DFDS(1)+D12*DFDS(2)+D11*DFDS(3)
DDFDS(4)=D44*DFDS(4)

DDFDS(5)=D44*DFDS(5)

DDFDS(6)=D44*DFDS(6)

SDFDS=DFDS(I)**2+DFDS(2)**2+DFDS(3)**2+DFDS(4)**2+DFDS(5)=*2
1 +DFDS(6)**2

DFDDF=DDFDS(1)*DFDS(1)+DDFDS(2)*DFDS(2)+DDFDS(3)*DFDS(3)
1 +DDFDS(4)*DFDS(4)+DDFDS(5)*DFDS(5)+DDFDS(6)*DFDS(6)

DENOM=HPRIME*SDFDS+DFDDF

C11=D11-DDFDS(1)*DDFDS(1)/DENOM

C12=D12-DDFDS(1)*DDFDS(2)/DENOM
C13=D12-DDFDS(I)*DDFDS(3)/DENOM

C14=-DDFDS(I)*DDFDS(4)/DENOM

C15=-DDFDS(I)*DDFDS(5)/DENOM

CIG=-DDFDS(1)*DDFDS(G)/DENOM

C22=Dll-DDFDS(2)**2/DENOM
C23=D12-DDFDS(2)*DDFDS(3)/DENOM

C24=-DDFDS(2)*DDFDS(4)/DENOM

C25=-DDFDS(2)*DDFDS(5)/DENOM

C2G=-DDFDS(2)*DDFDS(G)/DENOM

C33=D11-DDFDS(3)=,2/DENOM
C34=-DDFDS(3)*DDFDS(4)/DENOM

C35=-DDFDS(3)*DDFDS(5)/DENOM

C36=-DDFDS(3)*DDFDS(G)/DENOM

C44=D44-DDFDS(4),=2/DENOM

C45=-DDFDS(4)*DDFDS(5)/DENOM
C46=-DDFDS(4)*DDFDS(6)/DENOM

C55=D44-DDFDS(5)=*2/DENOM

C56=-DDFDS(5)*DDFDS(6)/DENOM
C66=D44-DDFDS(6)**2/DENOM

C(l 1)=Cll

C(1 2)=C12
C(I 3)=C16

c(2 i)=c(1,2)
C(2 2)=C22

C(2 3)=C2G

c(3 1)=c(1.3)
C(3 2)=C(2,3)
C(3 3)=C66

IF(IPC.EQ.1) RETURN

DSTRES(1)=CII*DSTRAN(1)+C12*DSTRAN(2)+C16*DSTRAN(3)

DSTRES(2)=CI2*DSTRAN(1)+C22*DSTRAN(2)+C26*DSTRAN(3)

DSTRES(3)=CIG*DSTRAN(1)+C26*DSTRAN(2)+CBB*DSTRAN(3)
DSTRES(4)=CI3*DSTRAN(1)+C23*DSTRAN(2)+C36*DSTRAN(3)

DDEPSP(I)=DSTRAN(1)-DSTRES(1)/EMI+VNUI*DSTRES(2)/EMI

1 +VNUI*DSTRES(4)/EMI

DDEPSP(2)=DSTRAN(2)+VNUI*DSTRES(1)/EMI-DSTRES(2)/EMI

1 +VNUI*DSTRES(4)/EMI

DDEPSP(3)=DSTRAN(3)-2.*(I.+VNUI)*DSTRES(3)/EMI

DDEPSP(4)=O.+VNUI,(DSTRES(1)+DSTRES(2))/EMI

1 -DSTRES(4)/EMI

DO 1050 I=1,4
DEPSP(d,I)=DEPSP(d,I)+DDEPSP(I)

1050 DEPSE(I)=DSTRAN(I)-DEPSP(d,I)

DEPBAR=(2./9.*((DDEPSP(1)-DDEPSP(2))**2

1 +(DDEPSP(2)-DDEPSP(4))**2+(DDEPSP(4)-DDEPSP(1))**2
2 +6.*(DDEPSP(3)/2.)**2))**0.5

EPBAR(d)=EPBAR(J)+DEPBAR



IEP=O

IF(IEP.NE.I) GO TO 1051

WRITE(G,1052)EPBAR(d),DEPBAR,DEPSP(J,I),DEPSP(J,2)

1 ,DEPSP(U,3),DEPSP(J,4)

1052 FORMAT(' ',3X,'EPBAR=',EI3.G,3X,'DEPBAR=',E13.G,3X,

1 'DEPSP(1)=',EI3.G,3X,'DEPSP(2)=',E13-G,3X,

2 'DEPSP(3)=',E13.6,/)
1051 CONTINUE

SMAI=STRESS(1)-ALPHA(I,d)

SMA2=STRESS(2)-ALPHA(2,d)

SMA3=STRESS(3)-ALPHA(3,J)

SMA4=STRESS(4)-ALPHA(4,d)

DEN=DFDS(1)*SMAI+DFDS(2)*SMA2+DFDS(3)*SMA4

1 +DFDS(G)*SMA3

SIGOLD=SIGBAR(J)

DO 1060 I=1,3

STRESS(1)=STRESS(I)+DSTRES(I)

1060 STRAIN(1)=DSTRAN(I)+STRAIN(1)

STRESS(4)=STRESS(4)+DSTRES(4)

I=I

2002 IF(EPBAR(J).LE.EPX(I,MATNO)) GO TO 2010

IF(I.GT.NUNIAX(MATNO)) GO TO 2003

I=I+l

GO TO 2002

2003 WRITE(G,7002)
7002 FORMAT(IOX,'STOP - EPBAR EXCEEDS LAST POINT ON CURVE')

WRITE(6,7020) MATNO,U,EPBAR(d)

7020 FORMAT(10X,'MATERIAL NO. ',13,

1 2X,'ELEMENT NO. ',I3,/,10X,
2 'EPBAR = ',E15.7,/)

STOP
2010 SIGBAR(d)=SP(I-1,MATNO)+(EPBAR(j)-EPX(I-I,MATNO))

1 *(SP(I,MATNO)-SP(I-1,MATNO))/(EPX(I,MATNO)

2 -EPX(I-1,MATNO))

DSIGB=SIGBAR(J)-SIGOLD
DMU=(DFDS(1)*DSTRES(1)+DFDS(2)*DSTRES(2)+DFDS(3)*DSTRES(4)

1 +DFDS(G)*DSTRES(3)

2 -2.*SIGOLD*DSIGB)/DEN

ALPHA(1,d)=ALPHA(1,d)+DMU*SMA1

ALPHA(2,d)=ALPHA(2,d)+DMU*SMA2

ALPHA(3,d)=ALPHA(3,d)+DMU*SMA3

ALPHA(4,J)=ALPHA(4,U)+DMU*SMA4
5000 CONTINUE

DO 5001 I=1,4

DSTRES(1)=STRESS(1)-SOLD(I)

5001DS(d,I)=DSTRES(I)

DO 5002 I=i,3

EO(J,I)=E(J,I)

5002 DSTRAN(1)=STRAIN(I)-EOLD(1)

IPLAS(J)=2

RETURN

END

C

C__=__e_=__e_ _e_e_e_=e_

C

C SUBROUTINE ELAS2D

C

C
C THIS IS A CONSTITUTIVE PACKAGE FOR ISOTROPIC

C LINEAR ELASTICITY...
C TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT

C OF A 2-D MATERIAL POINT

C PLANE STRAIN OR

C ORTHOTROPIC PLANE STRESS

C

SUBROUTINE ELAS2D(d,C,DS,MATNO)
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION STRESS(4),STRAIN(3),SG(4),

1 DSG(4),C(3,3) ,DS(1500,4)

COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,
1 IEQUIT,ITEMAX,ITEMP,IINT

COMMON/ELASI/S(1500,4),E(15CO,3),EO(1500,3),DSTRAN(3),

1 DSTRES(4)

COMMON/ELAS2/EMI(4),EM2(4),VNU(4),G12(4),YI(4),Y2(4),Y(4),

1 EM(4)

COMMON/AREAT/NSTE,INCR,ITER

EI=EMI(MATNO)
E2=EM2(_ATNO)

VNU12=VNU(MATN0)



II

CX

CX

CX

CX

CX

cx

c

c

cy
c

cx
CX

CX

CX

CX

CX
C

CX

CX

CX

7000
c

c

VNU21=VNU12*E2/E1

RG12=GI2(MATNO)

YI=Y(MATNO)
YL=YI(MATNO)

YT=Y2(MATNO)

DO 11 I=1,3

STRESS(1)=S(d,I)

STRAIN(I)=EO(d,I)

DSTRAN(I)=E(J,I)-EO(J,I)

CONTINUE

STRESS(4)=S(J,4)

CI=EMI/(I.+VNUI)

C2=Cl/(I.-2.*VNUI)

DI1=C2*(I.-VNUI)

D12=VNUI*C2

D44=Cl/2.

Plane Strain

Cl=E1/(I.+VNU12)

C2=CI/(1.-2.*VNU12)

Dll=C2*(1.-VNUl2)
D12=VNU12*C2

D21=D12

D22=D11

D44=C1/2.

Plane Stress

D11=E1/(1.0-VNU12*VNU21)

D12=VNU21*D11

D22=E2/(1.0-VNU12*VNU21)
D21=D12

D44=RG12

DSG(1)=D11*DSTRAN(1)+D12*DSTRAN(2)

DSG(2)=D21*DSTRAN(I)+D22*DSTRAN(2)

DSG(3)=D44*DSTRAN(3)

DSG(4)=DI2*(DSTRAN(I)+DSTRAN(2))
DSG(4) = 0.0

DO I0 I=i,4

I0 SG(I)=STRESS(I)+DSG(I)

REDUCE TRANSVERSE STIFFNESS UPON MATRIX CRACK INITIATION

$1 = ( (SG(I) - SG(2) ) / 2.0 )*'2

S2 = SG(3)*'2
$3S3 = $1 + $2

S3 = SQRT(S3S3)

SP1 = (SG(1) + SG(2) ) / 2.0 + $3

SP2 = (SG(1) + SG(2) ) / 2.0 - S3

SPMAX = DMAXI( SP1, SP2 )
IF ( SPMAX .GT. YL ) THEN

IF (SG(1) .GT. YL ) THEN
MATNO = 3

WRITE (6,7000) d, INCR

FORMAT(/,'MATRIX CRACK AT ELEMENT ',I5,' DURING STEP ',I5,/)

WRITE(6,6100)

c 6100 FORMAT(' ',/,3X,'STRESSES TO ELAS2D ARE',3X,'STRAINS',3X,
c I 'STRAIN INCREMENTS',//)

c DO 6101 I=1,3

c WRITE(6,6102)SG(I),E(J,I),DSTRAN(I)

c 6102 FORMAT(' ',3X,3(E13.B,3X))
c 6101 CONTINUE
C

ENDIF

C

C
CX

CX

CX

CX

CX
CX6495

CX

CX6500

CX 1
CX

DISABLE YIELD FUNCTION

F=.5*((SG(1)-SG(2))**2+(SG(2)-SG(4))**2

1 +(SG(4)-SG(1))**2+G.*SG(3)**2)-YI**2

WRITE(6,6495) J

FORMAT(//,'SG(1) - SG(4), F,YI FOR ELEMENT: ',I5,/)

WRITE(6,6500) SG(1), SG(2), SG(3), SG(4), F,YI

FORMAT(3X,E15.4,3X,E15.4,3X,EIS.4,3X,E15.4,/

3X,E15.5,3X,E15.5/)



CX IF(DABS(F).LT.IO.O) F:O.O

CX

IF(IDUMP.LT.4) GO TO 6004

WRITE(6,60(O))

60(0 FORMAT(' ',/,3X,'STRESSES TO ELAS2D ARE',3X,'STRAINS',3X,

I 'STRAIN INCREMENTS',//)

DO 6001 I=1,3

WRITE(B,GOO2)S(J,I),E(d,I),DSTRAN(I)

6002 FORMAT(' ',3X,3(E13.G,3X))
6001 CONTINUE

6004 CONTINUE

CX IF(IDUMP.LT.3) GO TO 6005

CX WRITE(6,6003) YI,F

CX 6003 FORMAT(' ',/,3X,'Y = ',E13.G,3X,'F = ',E13.6,/)
6005 CONTINUE

CX IF(F) 2CK)0,30,30
CX 30 WRITE(6,70()9) d

CX 7009 FORMAT(IOX,'ELASTIC ELEMENT NO. ',I3, iX,'HAS YIELDED',/)

CX STOP

2000 DO 3000 I=1,4

DSTRES(I)=DSG(I)

DS(J,I):DSTRES(I)

3000 STRESS(I)=STRESS(I)+DSTRES(1)

DO 3001 I=1,3

STRAIN(I)=STRAIN(I)+DSTRAN(I)

3001EO(J,I)=E(J,I)
12 CONTINUE

C(I,1)=D11

C(1,2)=D12

C( 1,3):0.0

C(2,1)=C(1,2)

C(2,2)=D22

C(2,3)=0.0
c(3, 1)=o.o
C(3,2)=0.0

C(3,3)=D44
RETURN

END

C

C

C SUBROUTINE VPLAS2D

C

C

C THIS IS A CONSTITUTIVE PACKAGE FOR RATE DEPENDENT

C VISCOPLASTICITY USING MILLER'S MODEL

C TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT

C OF A 2-D MATERIAL POINT

C

SUBROUTINE VPLAS2D(d,C,DS,IPC,MATNO)

IMPLICIT REAL'8 (A-H,O-Z)

DIMENSION STRESS(4),STRAIN(3),DFDS(6),DDFDS(6),

i SOLD(4),EOLD(3)

DIMENSION C(3,3),DST(1500,4),DS(i500,4),DET(1500,3)

COMMON/CHIST/RTOL,NN,NEL,NF,NDBC,IDUMP,IPRI,ISREF,

1 IEQUIT,ITEMAX,ITEMP,IINT

COMMON/ELASI/S(1500,4),E(1500,3),EO(1500,3),DSTRAN(3),

1 DSTRES(4)

COMMON/ELAS2/EMl(4),EM2(4),VNU(4),G12(4),YI(4),Y2(4),Y(4),
1 EM(4)

COMMON/PLASI/ALPHA(4,1500),EPBAR(1500),SIGBAR(1500),

1 IPLAS(15OO),EPSP(15OO,4),DEPSPT(1500,4),
2 DEPSP(1500,4)

COMMON/VPLAS1/DTIME,DEVPAL

COMMON/VPLAS2/RN,H1,H2,AA1,AA2,C2,DO,B1,TEMP,TMELT,QS
COMMON/BB/NUNIAX(4),IDUMP2,ISUB

COMMON/AREAIO/DST,DET

COMMON/AREAT/NSTE,INCR,ITER
C

C RECALL DRAG STRESS D FROM SIGBAR ARRAY
C

D=SIGBAR(J)
C

C INITIALIZE PLASTIC STRAIN RATE AND STRESS RATE

C FOR CALCULATION OF HPRIME FIRST TIME THROUGH
C SUBINCREMENTATION LOOP
C

EPSPDOTI=DEPSP(_,I)/DTIME

EPSPDOT2=DEPSP(J,2)/DTIME



EPSPDOT3:DEPSP(d,3)/DTIME

EPSPDOT4=DEPSP(d,4)/DTIME

SIGDOTI:DS(d,I)/DTIME

SIGDOT2=DS(d,2)/DTIME

SIGDOT3:DS(d,3)/DTIME

SIGDOT4=DS(J,4)/DTIME

C

C INITIALIZE SUBROUTINE STRESSES

C

DO 11 I=1,3
DEPSP(d,I):O.

STRESS(I):S(J,I)

STRAIN(1):EO(J,I)

DSTRAN(I):E(J,I)-EO(J,I)

11 CONTINUE

STRESS(4):S(J,4)

DEPSP(J,4):O.

DO 4020 I=I,3

SOLD(I):STRESS(I)

4020 EOLD(1)=STRAIN(1)

SOLD(4):STRESS(4)

C

C CALCULATE ELASTIC MODULUS MATRIX

C

EMI=EM(MATNO)

VNUI:VNU(MATNO)

YI=Y(MATNO)

CCI:EMI/(I.+VNUI)

CC2=CC1/(1.-2.*VNUI)
Dll=CC2*(1.-VNUI)

D12=VNUI'CC2

D44=CC1/2.
C

C SUBINCREMENTATION LOOP

C

400

3090

3031

3033

3032

AND STRAINS

DE=(4./3.*(DSTRAN(1)**2+DSTRAN(2)**2+DSTRAN(I)*DSTRAN(2)
1 +DSTRAN(3)**2))**.5

M=DE/DEVPAL+.I

IF(M.EQ.O) M=I

DO 400 I=1,3
DSTRAN(1)=DSTRAN(1)/M

DTSUB=DTIME/M

GO TO 3090

CONTINUE

IF(IDUMP.LT.2) GO TO 3032

WRITE (6,3031) M

FORMAT(' ',//,3X,'NO. OF SUBINCREMENTS = ',I3,//)

WRITE(G,3033) DE,DEVPAL

FORMAT(5X,'DE = ',Ei5.7,1X,'DEVPAL = ',E15.7,/)

CONTINUE

DO 5000 NSUB=I,M
C

C CONSTRUCT C MATRIX

C

DNUMI=SIGDOTI*EPSPDOTI+SIGDOT2*EPSPDOT2+

1 SIGDOT3*EPSPDOT3+SIGDOT4*EPSPDOT4

DENOMI=EPSPDOTI*=2+EPSPDOT2**2+EPSPDOT3**2+EPSPDOT4**2
IF(INCR.EQ.1) GO TO 334
GO TO 335

C

C ELASTIC CASE

C

334 CONTINUE

C(I,1)=D11

C(1,2)=D12

c(1,3)=o.o
C(2,1)=C(1,2)

c(2,2)=c(1,1)
C(2,3)=0.0
c(3,1)=o.o
C(3,2)=0.0

C(3,3)=D44

IF(IPC.EQ.I) GO TO 9999

DSTRES(1)=DIi*OSTRAN(1)+DI2*DSTRAN(2)

DSTRES(2)=D12*DSTRAN(1)+D11*DSTRAN(2)

DSTRES(3):D44*DSTRAN(3)

DSTRES(4)=DI2*(DSTRAN(1)+DSTRAN(2))
SIGDOTI=DSTRES(1)/DTSUB

SIGDOT2=DSTRES(2)/DTSUB

SIGDOT3=DSTRES(3)/DTSUB



SIGDOT4=DSTRES(4)/DTSUB

UPDATE TOTAL STRESS AND STRAIN

DO 1050 I:1,3

STRESS(I)=STRESS(I)+DSTRES(I)
1050 STRAIN(I)=DSTRAN(I)+STRAIN(1)

STRESS(4)=STRESS(4)+DSTRES(4)

GO TO 5000

335 CONTINUE

ELASTIC-PLASTIC CASE

332

333

DFDS(1)=2.*(STRESS(1)-ALPHA(I,d))-STRESS(2)+ALPHA(2,J)

I -STRESS(4)+ALPHA(4,J)

DFDS(2)=2.*(STRESS(2)-ALPHA(2,J))-STRESS(1)+ALPHA(I,d)

1 -STRESS(4)+ALPHA(4,d)

DFDS(3)=2.*(STRESS(4)-ALPHA(4,J))-STRESS(I)+ALPHA(1,J)
I -STRESS(2)+ALPHA(2,d)

DFDS(4)=O.

DFDS(5):O.

DFDS(6)=6.*(STRESS(3)-ALPHA(3,U))

DDFDS(1)=Dll*DFDS(I)+D12*DFDS(2)+D12*DFDS(3)

DDFDS(2)=D12*DFDS(1)+Dll*DFDS(2)+DI2*DFDS(3)

DDFDS(3):D12*DFDS(I)+D12*DFDS(2)+Dll*DFDS(3)
DDFDS(4)=D44*DFDS(4)

DDFDS(5)=D44*DFDS(5)

DDFDS(6)=D44*DFDS(6)

SDFDS=DFDS(1)**2+DFDS(2)**2+DFDS(3)**2+DFDS(4)=*2+DFDS(5)**2
1 +DFDS(6)**2

DFDDF=DDFDS(1)*DFDS(1)+DDFDS(2)*DFDS(2)+DDFDS(3)*DFDS(3)
1 +DDFDS(4)*DFDS(4)+DDFDS(5)*DFDS(5)+DDFDS(6)*DFDS(6)

IF(DABS(DENOM1).LT.1.D-20) GO TO 332
HPRIME=DNUMI/DENOM1

GO TO 333

HPRIME=l.0D25
CONTINUE

DENOM=HPRIME*SDFDS+DFDDF

C11:D11-DDFDS(I)*DDFDS(1)/DENOM

C12=D12-DDFDS(I)*DDFDS(2)/DENOM
C13=D12-DDFDS(1)*DDFDS(3)/DENOM

C14=-DDFDS(I)*DDFDS(4)/DENOM

C15=-DDFDS(1)*DDFDS(5)/DENOM

C16=-DDFDS(1)*DDFDS(6)/DENOM
C22=D11-DDFDS(2)**2/DENOM

C23=D12-DDFDS(2)*DDFDS(3)/DENOM

C24=-DDFDS(2)*DDFDS(4)/DENOM

C25=-DDFDS(2)*DDFDS(5)/DENOM

C26=-DDFDS(2)*DDFDS(6)/DENOM
C33=Dll-DDFDS(3)**2/DENOM

C34=-DDFDS(3)*DDFDS(4)/DENOM

C35=-DDFDS(3)*DDFDS(5)/DENOM

C36=-DDFDS(3)*DDFDS(6)/DENOM
C44=D44-DDFDS(4)**2/DENOM

C45=-DDFDS(4)*DDFDS(5)/DENOM

C46=-DDFDS(4)*DDFDS(G)/DENOM

C55=D44-DDFDS(5)**2/DENOM
C56=-DDFDS(5)*DDFDS(6)/DENOM

C66=D44-DDFDS(G)**2/DENOM
C(1,1)=Cll

C(1,2)=C12

C(1,3)=C16

C(2,1)=C(1,2)

C(2,2)=C22
C(2,3)=C26

C(3,1)=C(1,3)

C(3,2)=C(2,3)

C(3,3)=C66

IF(IPC.EQ.I) GO TO 9999

IF(IDUMP.LT.2) GO TO 557

WRITE(6,4228) (DSTRAN(I),I=I,4)

FORMAT(5X,'DSTRAN : ',4E12.4)
CONTINUE

4228

557

C

C CALCULATE STRESS SUBINCREMENT
C

DSTRES(1)=C11*DSTRAN(1)+C12*DSTRAN(2)+C16*DSTRAN(3)

DSTRES(2)=C12*DSTRAN(1)+C22*DSTRAN(2)+C26*DSTRAN(3)

DSTRES(3)=C16*DSTRAN(1)+C26*DSTRAN(2)+C66*DSTRAN(3)

DSTRES(4)=C13*DSTRAN(1)+C23*DSTRAN(2)+C36*DSTRAN(3)



SIGDOTI=DSTRES(1)/DTSUB

SIGDOT2=DSTRES(2)/DTSUB

SIGDOT3=DSTRES(3)/DTSUB

SIGDOT4=DSTRES(4)/DTSUB

C

C CALCULATE DEVIATORIC STRESS TENSOR

C

SKK=STRESS(1)÷STRESS(2)+STRESS(4)

SDI=STRESS(1)-SKK/3.

SD2=STRESS(2)-SKK/3.

SD3=STRESS(3)

SD4=STRESS(4)-SKK/3.

SMAI=SDI-ALPHA(I,d)

SMA2:SD2-ALPHA(2,j)

SMA3=SD3-ALPHA(3,j)

SMA4=SD4-ALPHA(4,j)

SIGEFF=(i.5*(SMAI**2+SMA2**2+SMA3**2+SMA4**2))*=O.5
C

C UPDATE INTERNAL VARIABLES
C USING EULER INTEGRATION
C

C

C FIRST CALCULATE PLASTIC STRAIN RATE
C

IF(DABS(SIGEFF).LE.I.0D-8) GO TO 301

IF(DABS(SIGBAR(J)).LE.I.0D-8) GO TO 301

FAC4=-QS*4.184/O.G/8.314/TMELT

THETA=DEXP(FAC4*(DLOG(O.G*TMELT/TEMP)+I.))

BTHETA=BI*THETA

EPSBDOT=BTHETA*(DSINH((SIGEFF/D)**I.5))**RN

FAC=I.5*(EPSBDOT/SIGEFF)
EPSDOTI=FAC*SMA1
EPSDOT2=FAC*SMA2

EPSDOT3=FAC*SMA3

EPSDOT4=FAC*SMA4

GO TO 305

301 EPSBDOT=O.
EPSDOTI=O.

EPSDOT2=O.

EPSDOT3=O.

EPSDOT4=O.

305 CONTINUE
C

C NEXT CALCULATE BACK STRESS RATE
C

BSIGDOTI=(2./3.)*HI*EPSDOT1

BSIGDOT2=(2./3.)*HI*EPSDOT2

BSIGDOT3=(2./3.)*HI*EPSDOT3

BSIGDOT4=(2./3.)*HI*EPSDOT4

BSIGBAR=((3./2.)*(ALPHA(I,J)**2+ALPHA(2,J)**2+

1 ALPHA(3,d)**2+ALPHA(4,d)**2))**O.5
IF(BSIGBAR.LT.I.OD-7) GO TO 306

FACI=HI*BTHETA*(DSINH(AAI*BSIGBAR))**RN/BSIGBAR

BSIGDOTI=BSIGDOTI-FACI*ALPHA(1,d)
BSIGDOT2=BSIGDOT2-FACI*ALPHA(2,d)

BSIGDOT3=BSIGDOT3-FACI*ALPHA(3,j)

BSIGDOT4=BSIGDOT4-FACI*ALPHA(4,J)
306 CONTINUE

C

C FIND DRAG STRESS RATE

C

DDOT=H2*EPSBDOT*(C2+BSIGBAR-(AA2/AAI*D**3))
FAC2=DSINH(AA2*D**3)

IF(DABS(FAC2).LT.I.0D-4) GO TO 307

DDOT=DDOT-H2*C2*BTHETA*FAC2**RN
307 CONTINUE

C

C FINALLY, UPDATE ALL INTERNAL VARIABLES
C

DEPSP(d,I)=DEPSP(d,1)+EPSDOTI*DTSUB

DEPSP(d,2)=DEPSP(d,2)+EPSDOT2*DTSUB

DEPSP(d,3)=DEPSP(J,3)+EPSDOT3*DTSUB
DEPSP(d,4)=DEPSP(d,4)+EPSDOT4*DTSUB

ALPHA(d,1)=ALPHA(d,1)+BSIGDOTI*DTSUB

ALPHA(d,2)=ALPHA(d,2)+BSIGDOT2*DTSUB

ALPHA(J,3)=ALPHA(d,3)+BSIGDOT3*DTSUB
ALPHA(d,4)=ALPHA(d,4)+BSIGDOT4*DTSUB
D=D+DDOT*DTSUB

SIGBAR(d)=D



c
CUPDATETOTALSTRESSAND STRAIN

C

DO 1060 I=1,3

STRESS(I)=STRESS(I)+DSTRES(1)

1060 STRAIN(I)=DSTRAN(I)+STRAIN(1)

STRESS(4)=STRESS(4)+DSTRES(4)
5000 CONTINUE

C

C COMPLETE SUBINCREMENTATION LOOP -

C CALCULATE TOTAL STRESS INCREMENT

C

DO 5001 I=I,4

DSTRES(I)=STRESS(I)-SOLD(I)

5001DS(d,I)=DSTRES(1)
C

C CALCULATE TOTAL STRAIN INCREMENT

C

DO 5002 I=1,3

EO(J,I)=E(d,I)

5002 DSTRAN(1)=STRAIN(I)-EOLD(1)

9999 CONTINUE

RETURN

END


